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A BRIEF INTRODUCTION TO Al = ML

O Evolving concept of computing ...

o Passive computing: everyday use, relies on the user’s input
(in some cases: garbage in garbage out!)

o Active & interactive computing: machine learns, starts making predictions and
suggestions, capable of surpassing the user’s “expectation” / “imagination”!

1 Machine Learning vs. Artificial Intelligence?

o Atrtificial Intelligence: The machine mimicking human intelligence, with the goal
of replacing it wherever possible.

o Machine Learning: The machine learns how to perform a specific task(s) and
provide accurate results/predictions (a part/subset of artificial intelligence).
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MACHINE LEARNING VS. ARTIFICIAL INTELLIGENCE
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Artificial Intelligence includes

- Automation: Robotics
ARTIFICIAL INTELLIGENCE  Natural language processing
A program that can sense, reason, - Chatbots
act, and adapt

- Computer Vision
- Machine Learning, DL, NN

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from o
vast amounts of data Origin: R. Khalkar et al.
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ANOTHER DEFINITION OF MACHINE LEARNING!

Changing random stuff
until your program works s
"hacky" and "bad coding practice."

Butif youdoit fast enoughitis i
“Machine Learning;'f i ‘\‘f,‘
and pays 4x your curtent s3

Origin: Cornell U. lecture
in computer science
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THE ATLAS AlI-ML PROJECT -
OVERVIEW & HIGHLIGHTS
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OUTLINE
dBrief Introduction to the ATLAS Facility at Argonne

dOverview of the ATLAS Al-ML Project
dSummary of Progress & Highlights
dMain Conclusions

Future Plans
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ATLAS: ARGONNE TANDEM LINEAR ACCELERATOR SYSTEM

Fragment

v’ 1st Superconducting heavy-ion linac in the world Mass Analyzer

v'It has been operating for over 40 years

. - . HELIOS
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BRIEF OVERVIEW OF THE ATLAS AI-ML PROJECT

Use of artificial intelligence to optimize accelerator operations
and improve machine performance

O At ATLAS, we switch ion beam species every 3-4 days ... = Using Al could
streamline beam tuning & help improve machine performance

O The project objectives and approach:

o Data collection, organization and classification, towards a fully automated and
electronic data collection for both machine and beam data

o Online tuning model to optimize operations and shorten beam tuning time in
order to make more beam time available for the experimental program

o Virtual model to enhance understanding of machine behavior to improve
performance and optimize particular/new operating modes
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SUMMARY OF PROGRESS & HIGHLIGHTS

O Automated data collection and two-way communication established
U Bayesian Optimization (BO) successfully used for online beam tuning
O Multi-Objective BO (MOBO) to optimize transmission and beam size
O Al-ML supporting the commissioning of a new beamline (AMIS)

O Transfer learning from one ion beam to another (BO)

4 Transfer learning from simulation to online model (BO with DKL)

U Reinforcement Learning (RL) for online beam tuning — Exp. Success

4 Good progress on the virtual machine model / physics model
(@ENERGY 5 Argonne &
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AUTOMATED DATA COLLECTION - ESTABLISHED

v' Beam currents and beam profiles digitized
v" A python interface developed to collect the data automatically

rwn X
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Schematic of data collection interface

Data collected B.C.M. el s ":ccm ECR2 CTLRM

FCP201 FCP202 FFP201
=

Elements:
read/set

&d
FC: digitized, insert, read
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ONLINE = INTERFACE WITH CONTROL SYSTEM

Laptop JcTy getall

the data from the machine Python

< | [ <::| =
SERVER -
D I > -_' -— |::> UU Control System
. " |

POST: set new settings to the machine

OFFLINE - INTERFACE WITH BEAM SIMULATION

v' Python wrapper for TRACK (Simulation Code) ~ N
. . _ Python Wrapper

v' Generation of simulation data <:|

v' Different conditions and inputs |:>

v"Integration with AI/ML modeling N J
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BAYESIAN OPTIMIZATION — A BRIEF DESCRIPTION

- Particle —
( St ]_’ Accelerator [Transn:msmn]
I e Y R B

Bayesian Optimization

cquisitio Surrogate
Function Model

. .

v' Surrogate Model: A probabilistic model approximating the objective function
[Gaussian Process with Radial Basis Function (RBF) Kernel and Gaussian likelihood]
v' Acquisition Function tells the model where to query the system next for more likely improvement

» Bayesian Optimization with Gaussian Processes guides the model and gives areliable estimate of
uncertainty
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BAYESIAN OPTIMIZATION USED IN ONLINE TUNING

Beamline under study *

gom “ + 2xSteerers

o 7 variable parameters

(3 quadrupoles + 2x2 steerers)

o Optimization of beam
transmission
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AlI/ML SUPPORTING AMIS LINE COMMISSIONING

Beam
to
[] Booster

New Material Irradiation Station at ATLAS
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J J Pulsed

J J J Wien

Filter

Low-energy heavy-ion beams ~ 1 MeV/u can
effectively emulate material damage in nuclear
reactors, in both fuel and structural materials.

Transmission

Improving Beam Transmission

Problem: Maximize beam transmission by varying a triplet,
two dipoles and two steerers [BO]; Results: 40 - 70%
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Improving Beam Profiles

Problem: Produce symmetric beam profiles by varying a
triplet and a steerer [BO]
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Training online, slow convergence but steady progress.
Competition between nice profiles and beam transmission!
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MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

Multi-Objective Problem: Optimize transmission and beam profiles on target - Not easy for an operator!

AMIS line: varying a
triplet and a doublet

g
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TRANSFER LEARNING FROM 10O TO #°NE - BO

Goal: Train a model using one beam then transfer it to tune another beam - Faster switching and tuning

Training model on *0 =) Applying same model to 22Ne

=y Target
10 Transmission through AMIS - From %0 to 2’Ne
2Ne [BO]
—— 150 [BO]
. . . Doublet 80 Initial Set - 20 Rand. Conf.
AMIS line: varying a + 10 [80)

triplet and a doublet

22Ne [Tuned beam]
160 [Tuned beam]

Transmission [%]

Triplet -
Transmission through AMIS - '°0 BO .
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.. —— 190 [BO] # of Iteration
BO Training: Initial Set - 20 Rand. Conf.
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terations 1% [Tuned beam] 160 Model loaded for 22Ne: Initial transmission improved
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53 > ~ 60% in 7 iterations: 48 > 55 %

Beam transmis.

40

Transmission [%)]

With more training for 22Ne: 48 - 67%
Model saved & =

exported Scaling was applied from 160 to 22Ne, re-tuning is often
oLtk needed because of different initial beam distributions
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TRANSFER LEARNING FROM SIMULATION TO ONLINE

Goal: Train a model using simulations then use it for online tuning - Less training & faster convergence online

Method: Deep kernel learning (DKL) to combine the representational power of neural networks with
the reliable uncertainty estimates of Gaussian processes.

100 Transmission through AMIS - 'O with DKL

—— 150 [BO]
—e— 16 [BO4+DKL]
80 | 150 [Tuned beam]

160 Results:

BO + DKL

1 converges
Bends . faster than
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! (53 > 56%)
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REINFORCEMENT LEARNING — A BRIEF DESCRIPTION

Basic Concept Implementation Example
o= m——— Updates = = = = = = =<
o[g) Agent E =Update- 6
= w . f )
r 3 1
— Policy Enviroment | Critic E"‘”
\ 1 / Actions : - TN
X 727 =Value—p=| Compare
Upc:ate Rewards v ! [ P ]
RL Algorithm Observation oW | Enviroment
g Actions I . Reward

=1
\ 4‘1

= 7 Actor
State
Observations
v' Essence: Learning from experience based on interaction with the environment
v'Action: Varies the parameters/variables of the problem
v Reward: Measures the goal function to maximize/optimize
v" Policy: How the process evolves/learns
4 Algorithm used: Deep Deterministic Policy Gradient (DDPG); Actor-Critic Approach

p“‘“" oooooooooooooooooooooooooooooooooooooooooo
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REINFORCEMENT LEARNING: FIRST ATTEMPT...

Simulation Case [Simulation |

v Focusing the beam through an aperture
using an electrostatic triplet (3 Quadrupoles)

v Voltage limites: ¢ r.iq4 Eoasiure

2 - 10 kV o5 0 “ %0 5000 T o W;v:?nahm):;n: W 00 ° ' To ) oo e
v Max. action: o T ., i

Q-3 Reward

@

Training

B a0 200 R4 .'V R
+/- 0.25 kV g - : -. w
. = T N " '.\ \ B0 ..' J"
. 17 B¢ | :\_ A—-“. Aivomn  ww | O 3 AR fis| s ;
Actual E t AT : IR A
C ua Xper’men = Y E LR I . VoL e T e o
! Rt s v w wemmew vam :
T a6 & & m m 1 » 4 B 8 W m ° X & B o W D to» o @ ® W I

Doublet-1 Doublet-2 feration Reration teration Eerafion
o M »' + 2xSteerers _Experimental* |

v/ Maximizing beam transmission using 2 | AR
doublets (4 quads) and 2x2 steerers 1
v Electrostatic Quadrupoles :
« 2kVtol1l0OkV
* Max action +/- 0.25 kV
v’ Steering Magnets:
« -1AtolA UESER | RS | s | ey
(@ ENERGY (5t Argonne &

NATIONAL LABORATORY

o = B B

Q2 - Defocusing (kv
Q4 - Defocusing [kV]

Training




REINFORCEMENT LEARNING: FIRST EXP. SUCCESS

Beamline under study (< iine onine )
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» Training done in 816 total steps/evaluations (48 episodes)

AMIS beamline

| Testing - Online |

. . . _— Quad-1 Quad-2 Quad-3 Reward: Transmission
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- Varying 3 magnetic quads i T e B e e i e I
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- Current I!m'FS: 2 — 12 Amps > Testing done for 8 episodes (16 steps/episode)
- Max. Action: Full range > Model converges in 2-3 steps, starting from random config.

» RL is much slower than BO, requiring significantly more data = more iterations to train,
but once trained, it takes fewer steps to converge to the best solution ...
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REINFORCEMENT LEARNING: MORE PARAMETERS
Beamline under study (_Training - Online |

Training: Quad-1 Quad-2 Quad-3 Quad-4 Quad-5 Reward
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» Testing done for 8 episodes (16 steps/episode)
» Model converges in 2-3 steps, starting from same config.
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PROGRESS ON THE VIRTUAL MACHINE MODEL

No Steering (<Diff> ~ 46%) With Steering (<Diff> ~ 16%) With Steering + Misalignment (<Diff> ~ 6%)
1004 @ L] ] ® Exp. transmission L] ® Exp. transmission so-{ @ ® Exp. transmission
o ® Sim. transmission a0l e ® Sim. transmission ® Sim. With misalignment
o 70
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v In order to develop a realistic virtual machine model, we need first to improve the

predictability of the physics model based on beam dynamics simulations (using TRACK code)
Significant improvement was realized by adding steering effects, using steerers settings
Further improvement achieved by adding misalignment effects, obtained using BO inference
Adding information about the initial beam distribution should close the gap even further

Once the agreement is ~ 1%, a surrogate model will be developed based on the simulations
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MAIN CONCLUSIONS

O Bayesian Optimization is very effective for beam tuning with no prior knowledge,
and typically converges in 50 iterations or less for few parameter problems (< 10).
With every iteration taking ~15 s, that’'s 10-15 min, which’s comparable to operators.

O BO was more competitive and helpful for beam commissioning (new to operators),
and for multi-objective optimization, which is not an easy task for the operators.

O We were able to save a BO model from one beam and use it as starting point (prior
knowledge) to tune another beam which accelerated convergence. Transfer from a
simulation model was not as successful due to discrepancy with the actual machine.

O Reinforcement Learning requires prior training which is very expensive to perform
online. We were able to train a model with ~ 5 parameters in ~1000 iterations which
took ~ 4 hours, but once trained it converged in 2-3 iterations, less than 1 min!

O We made good progress on the virtual machine model or digital twin, which once
ready, it will be very helpful to train the models offline then apply them directly to the
machine, hopefully without requiring further online training...
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PROJECT ACCOMPLISHMENTS VS. OBJECTIVES

4 Original Project Objectives:

o Data collection, organization and classification, towards a fully automated
and electronic data collection for both machine and beam data...
established

o Online tuning model to optimize operations and shorten beam tuning time
In order to make more beam time available for the experimental program...
achieved for short beam lines, commissioning of a new beamline

o Virtual model to enhance understanding of machine behavior to improve
performance and optimize particular/new operating modes ...
good progress, a long-term goal...
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WHAT’S NEXT — ANEW PROJECT PHASE...

Same project title: Use of artificial intelligence to optimize
accelerator operations and improve machine performance

U The main objectives of the new project are:

o Deploy the autonomous beam tuning tools developed during our previous
project, evaluate their impact on both automating the tuning process and
saving on tuning time.

o Develop tools for new operating modes such as multi-user operation of the
ATLAS linac and high-intensity beams, as well as developing virtual
diagnostics to supplement existing ones.

Ui, DECARTHENT OF  pcgonne stona Laporstory s .
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MANY THANKS TO

1 Jose Martinez: project postdoc, did most of the work ...

J ATLAS Controls Team:;
Daniel Stanton and Kenneth Bunnell

1 ATLAS Operations Team:
Ben Blomberg, Eric Letcher and Gavin Dunn

O ATLAS Users Liaison:
Daniel Santiago
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THANK YOU
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