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Particle Accelerators & Quantum Computers?

https://lcls.slac.stanford.edu/lcls-ii/ldesign-and-performance

LCLS-II                                                 

X-ray Free Electron Laser
Superconducting Qubit

M. Reagor et al, Science Advances, Vol.4, no. 2, (2018)

• Material analysis

• Exploration of fundamental matter

• Medical applications

• …

• New platform for advanced 

computing

• Prime number factorization

• Atomic simulations
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The Common Factor: Nb Superconducting RF Cavities

High Energy Particle Acceleration
Low Energy Quantum Computing

Performance is governed by properties 

within the first ~100 nm from inner surface

Nb

Nb2O5

~100 nm

~5 nm

RF fields
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Introduction to SRF Cavities

• Basics of RF superconductivity

• Intro to Cavity Testing

Part I: SRF R&D for High Energy Accelerator Applications

• Investigating Mechanisms for Ultra-High Quality Factors 

• Investigating Mechanisms for Ultra-High Quality Factors Post N-Doping

Part II: SRF R&D for Low Energy Quantum Computing Applications – SQMS

• SRF Cavities for Quantum Bits

• Dissipation in Quantum Devices

Summary

Overview
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Basics of RF 

Superconductivity
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Below Tc, conduction electrons (e) 

interact via virtual phonons to pair up 

and form bosonic Cooper Pairs (CP) 

that propagate with zero resistance 

BCS Theory of Superconductivity

Attractive e-e interaction leads 

to a gap in energy spectrum

• Δ0,Nb ≈ 1.5 – 1.62 meV 

• Singularity in DOS: 
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Size of CP

Plot adapted from M. Martinello, TTC Topical Workshop @ FNAL, 2017

GIF from http://mriquestions.com/superconductivity.html

Quasi-particles (QP)

Cooper Pairs (CP)
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Temperature dependent “BCS” resistance 

driven by single state quasi-particles (QP):

• Thermal excitation (T > 0K) 

• Pair-breaking of CPs by photon absorption

Temperature independent residual resistance

• Trapped magnetic flux

• Sub-gap states

• Proximity coupled inclusions

• Material properties

• …..

Surface Resistance in SRF Cavities
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Intro to SRF 

Cavity Testing
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Cavity Testing
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• Cavities instrumented with temp. 

sensors, fluxgates, installed in large 

He dewars

– Cooled to 2 K

• Power balance measurement used 

to obtain:

“Quality factor”

“Accelerating gradient”
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• Q0 limited by Rs 

• Eacc limited by:

– Available RF power

– Quench: thermal breakdown of SC

Goal of accelerator driven SRF 

research: Higher Q0 and Eacc

• Cheaper accelerators/higher energy

One goal of quantum computing driven 

SRF research: Higher Q0 at low Eacc 

• Longer photon lifetimes = better 

quantum computer

Figure of Merit and Motivations for Different Thrusts of R&D
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T = 2 K
f0 = 1.3 GHz

Quantum goal
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Part I: SRF R&D for

High Energy Accelerator

 Applications
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Q0 vs Eacc of Cavities Post State-of-the-Art Surface Treatments

D. Bafia | MSU/FRIB Seminar

Near surface impurity structure affects RF 

performance

• Surface processing techniques – “recipes”

– Baking/chemical treatments

Higher Q0 and Eacc➔ cheaper accelerators!

Key state-of-the-art surface treatments:

• Electropolishing (EP)

T = 2 K
f0 = 1.3 GHz

EP

Performance of FNAL SRF Cavities 
Subjected to Various Surface Treatments
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Q0 vs Eacc of Cavities Post State-of-the-Art Surface Treatments
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Near surface impurity structure affects RF 

performance

• Surface processing techniques – “recipes”

– Baking/chemical treatments

Higher Q0 and Eacc➔ cheaper accelerators!

Key state-of-the-art surface treatments:

• Electropolishing (EP) 

• Low T baking (LTB)

T = 2 K
f0 = 1.3 GHz

Performance of FNAL SRF Cavities 
Subjected to Various Surface Treatments

LTB

EP
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Q0 vs Eacc of Cavities Post State-of-the-Art Surface Treatments
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T = 2 K
f0 = 1.3 GHz

LTB

EP

Not understood how impurities vary the 

interface to allow for these phenomena

Near surface impurity structure affects RF 

performance

• Surface processing techniques – “recipes”

– Baking/chemical treatments

Higher Q0 and Eacc➔ cheaper accelerators!

Key state-of-the-art surface treatments:

• Electropolishing (EP) 

• Low T baking (LTB)

• Nitrogen Doping

Performance of FNAL SRF Cavities 
Subjected to Various Surface Treatments
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Mechanisms for High 

Gradients in Cavities 

Post LTB

D. Bafia | MSU/FRIB Seminar15 10/20/2024



EP cavities:

• High Field Q Slope (HFQS): sharp Q0 

degradation driven by the breakdown of 
proximity coupled Nb nano-hydrides

Overcoming High Field Q Slope (HFQS) in LTB Cavities
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High field Q 
Slope (HFQS)

Hb

EP
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Overcoming High Field Q Slope (HFQS) in LTB Cavities
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EP
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• Empirically derived fix: low 

temperature bake (LTB) cavity under 

vacuum at 120 C for 48 hours 
– “120 C baking effect”

EP cavities:

• High Field Q Slope (HFQS): sharp Q0 

degradation driven by the breakdown of 
proximity coupled Nb nano-hydrides



Recent SIMS 

measurements on SRF 

cavity cutouts has 

highlighted the role of 

oxygen in enabling 
ultra-high gradients 

Role of Oxygen Diffusion in the 120C Baking Effect
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Before baking After 120C baking

A. Romanenko et al, Proceedings 
of SRF’2019, THP014

Implication: able to tune 

performance by diffusing oxygen 

from the native oxide via LTB



Subjected a cavity to sequential rounds of  LTB treatments, gradually diffusing O deeper

Solidifying the Role of O in the Mitigation of HFQS
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Q0 vs Eacc Post Sequential in-situ Baking 

HFQS onset moves up 
post sequential baking!

Calculated O Depth Profile
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Supports Romanenko model of hydrides and 
shows that diffused oxygen enables high gradients 

D. Bafia et al, Proceedings of SRF’2021, THPTEV016



Investigating Mechanisms 

for Ultra-High Q0

Post N-Doping

D. Bafia | MSU/FRIB Seminar20 10/20/2024



Effect of Nitrogen Doping on Cavity Performance
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T = 2 K
f0 = 1.3 GHz

LTB

EP

Performance of FNAL SRF Cavities 
Subjected to Various Surface Treatments

• Nitrogen doping: Cavity surface 

treatment which introduces 

uniform concentrations of N 

interstitial in RF layer 

•  Yields cavities w/

– Q0 > 5E10 @ 2 K

– Puzzling anti-Q slope

– Early quench
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N2

Nb

Slides adapted from M. Martinello

“2/6” Nitrogen-Doping Treatment

800C 
UHV, 3 
hours

800C 
UHV, 6 
minutes

UHV 
cooling

5 um EP

N

Final RF Surface

800C 
UHV, 6 
minutes

UHV 
cooling

5 um EP

800C N2 
p = 25 

mTorr 2 
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800C N2 
p = 25 
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N
 In
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N

b
x N

y
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Depth profile of 
Nitrogen impurities 

Why does a uniform layer with ~100ppm 
of nitrogen allow for record high Q0 ’s in 
SRF cavities?

22



Well known method used to extract avg electronic 

MFP near the RF surface:

• NA + Amp sends a low signal (10mW) to measure f0

• Increase temperature slowly (< 0.1 K/min) w/ 

heaters at bottom 

• TFM:

• Increase in effective RF volume = decrease in f0  

Experimental Setup for Frequency vs Temperature Measurements

RTDs

Heater

Network Analyzer 
(NA) + Amplifier

D. Bafia | MSU/FRIB Seminar

Liquid He 
level

PiPt

Pre-amp
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Zoology of ∆f0 vs T feature near Tc

Occurs in N-
Doped cavities
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Typically occurs 
in EP cavities 



Linear relationship between 

quality factor and dip magnitude!

Both Q0 and dip magnitude tied to 

same interface properties

A full model of the frequency dip 

would give insight on mechanisms 

responsible for high Q0

Quality Factor Correlates with Magnitude of Frequency Dip

D. Bafia | MSU/FRIB Seminar

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10
 EP

 N-Doped

 Mid-T Baked

 Line of Best Fit

Q
0
 (

E
a

c
c
=

1
6

 M
V

/m
) 

 [
x
1

0
1
0
]

Dfdip (kHz)

Equation y = a + b*x

Intercept 2.44671 ± 0.29817

Slope 1.04936 ± 0.18992

R-Square (COD) 0.60419

Mid-T bake data comes S. Posen et al. Phys. Rev. Appl. 13, 014024 (2020)
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Varied the concentration of interstitial N in cavities and found that both frequency dip magnitude 

and transition temperature followed some exponential relationship with the MFP (concentration) 

• Dip is tied to fundamental properties within the interface

Tracking ∆fdip and Tc with Average MFP (or Concentration)
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Mid-T bake data comes S. Posen et al. Phys. Rev. Appl. 13, 014024 (2020)
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EP Substrate + Mid T Bake x 2.5 hr:

 TE1PAV005 

 TE1PAV008 

3/60+10mm EP Substrate + Mid T Bake x 2.5 hr:

 TE1RI006 

Doped Underdoped Not Doped
Heavily

 Doped

Tc vs MFP ∆fdip vs MFP
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• Two 1.3 GHz single cells subjected to either EP or N-doping

• Performed: RF measurements, impedance vs temperature measurements, and 

calculated the experimental RF conductivity

Study: Implications of the Dip on Conductivity

2/6 + 5 μm EP @ 900C  N-Doping

900Cx3hrs in UHV

900Cx2min in 25 mTorr N

900Cx6min in UHV

+5μm EP
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EP

30μm EP
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N-doped cavity better fitted w/

• Larger (avg) ∆0

• Lower (avg) inelastic scattering Γ

– Less proximity coupling

Agrees w/:

• PCTS by Groll et al. on similarly treated 

cavity cutouts  arXiv:1805.06359 

• Herman PRB 104, 094519 (2021)

• Kubo PRAppl 17, 014018 (2022)

Conductivity of N-Doped and EP Cavities
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D. Bafia et al., 
arXiv:2103.10601

Model Fitting Parameters

Conclusions of study:

• Compared to EP cavities, N-doped cavities exhibit larger 

average ∆ and lower levels of Γ within the interface

– May enable anti-Q slope and frequency dip phenomena

https://arxiv.org/abs/1805.06359
https://arxiv.org/abs/2103.10601


Part II: SRF R&D for Low Energy 

Quantum Computing Applications
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SRF cavities provide a technological 

advantage for many applications in the 

quantum regime

– Qubit readout

– Materials studies

– Quantum memory

– Particle detection

Why Use SRF Cavities in the Quantum Regime?
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200x

A. Romanenko et al, Phys. Rev. Applied 13, 034032, 2020



32

SQMS MISSION  Achieve transformational advances in the major cross-cutting challenge of 

understanding & eliminating decoherence mechanisms in superconducting devices, 
enabling construction and deployment of superior quantum systems for computing & sensing.

A DOE National QIS Research Center

  30

   450+

Partner Institutions

Collaborators

[excerpt]



Materials 
Discovery

SQMS S&T Innovation Chain: from material discovery to quantum advantage

High Coherence 
Devices

Systems 
Integration

New quantum 
computing and 
sensing platforms

Quantum 
Advantage
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What is a Qubit?
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Qubits: basic unit of quantum information → Two (energy) level system

                          

                           |ψ>= 𝜶|0>+ β|1>                    

Superposition       

10/20/2024
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Phenomena give a quantum computer the potential to provide 

computational capacity for dramatic speedups in several high impact areas 

|ψ>= 𝜶|0>+ β|1>                    

Superposition       Entanglement       
“Spooky action 
at a distance”

What is a Qubit?
Qubits: basic unit of quantum information → Two (energy) level system

                          

                           



Superconducting Qubits 

2D
1. Resonators (cavities)

3D

Fermilab SRF 
resonators

Rigetti 8-qubit 
processor

…

|0>

|1>

|2>

A. Romanenko et al, Phys. 
Rev. Appl. 13, 134052 (2020)

M. Reagor et al, Science 
Advances, Vol.4, no. 2, (2018)
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Superconducting Qubits 

2D
1. Resonators (cavities)

3D

Fermilab SRF 
resonators

J. Koch et al, Phys. Rev. A 76, 042319 (2007)

Rigetti 8-qubit 
processor

2. LC circuit with Josephson junction

SC qubit

based on 

Josephson 

junctions

…

|0>

|1>

|2>

Two Level 
System!

A. Romanenko et al, Phys. 
Rev. Appl. 13, 134052 (2020)

M. Reagor et al, Science 
Advances, Vol.4, no. 2, (2018)

Need long quantum coherence for both resonator and JJ

→ Need a qubit that you can manipulate and not confuse with other states
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Dissipation in Quantum Devices
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Dissipation in quantum regime given by lifetime of the quantum 

information (or photons) (T1) stored in the device

or Si

Qubits are limited by the worst component in the 

system → which materials/interfaces are the worst?



• Catch-all mechanism used to describe losses 

with a particular loss behavior

• Induce noise in quantum devices introducing 
charge, flux, Ic noise

• If TLS couple directly to qubit transition, may 

allow for direct relaxation channel

• Quantum coherence is negatively affected

TLS Dissipation

V

39

Images from C. Muller et al. 
Rep. Prog. Phys. 82, 124501 (2019) 
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Identifying Sources of 

Decoherence in the Quantum Regime
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Nb2O5 Signal of Nb Cutout 
Sample Post Baking in ToF SIMS
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Nb2O5 Signal of Nb Cutout 
Sample Post Baking in ToF SIMS
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Nb2O5 Signal of Nb Cutout 
Sample Post Baking in ToF SIMS
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Nb2O5 Signal of Nb Cutout 
Sample Post Baking in ToF SIMS
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Nb2O5 Signal of Nb Cutout 
Sample Post Baking in ToF SIMS
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D. Bafia et al. PRAppl 22, 024035 (2024)

TLS Loss of Sequentially Baked Nb Cavity

Lossy Element #1: Native Niobium Oxide?

Missing O Counts in Nb2O5 of Nb Cutout 
Sample Post Baking in ToF SIMS

• TLS loss is aggravated when # of missing O atoms increases

– O vacancies likely host magnetic impurities (agrees with PCTS studies by Proslier)

Yes, niobium oxide is lossy!



Lossy Element #2: O Impurities in Nb? 
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Treated Nb Cavity



Lossy Element #2: O Impurities in Nb? 

10/20/2024 D. Bafia | MSU/FRIB Seminar48

D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Treated Nb Cavity



Performance at low fields with and 

without interstitial O is identical

Lossy Element #2: O Impurities in Nb? 
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D. Bafia et al. PRAppl 22, 024035 (2024)

Q0 of Sequentially Treated Nb Cavity

Interstitial O does not contribute to 
additional TLS (yet?)



Lossy Element #3: Nb Film Quality?
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B. Abdisatarov et al arXiv:2407.08856, to be published in APL

Bulk Nb

RRR ~ 300

HiPIMS Nb Film

RRR ~ 50

Q0 vs T of Bulk and Nb Film Cavities

Nb Film quality does not limit T1 (yet?)

https://arxiv.org/abs/2407.08856


Lossy Element #4: Substrate?
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Loss Tangent of High 
Resistivity Si

M. Checchin et al. 
PRAppl 18, 034013 
(2022)

• Higher than expected loss tangent for Si

Yes, Si substrates are presently limiting T1!



Using Findings to Develop New Qubits Which Push Performance
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M. Bal et al. npj Quantum Inf 10, 
43 (2024)

Biggest limiting factors for T1

• Si Substrate

– Sol’n: use Sapphire

• Niobium Oxide

– Sol’n: encapsulate with 

other materials to prevent 

formation



Ultra-Sensitive Measure of Dark Photons with 3-D Nb Cavities

53

• Dark matter: theorized to make up 

most of the universe, hard to measure

• One potential way of: dark photons

– Weakly interacts with matter, very hard to 

measure

• “Light shining through wall experiment”

– High Q increases number of photons in 

the emitter & allows to resonantly 

enhance signal in receiver cavity 

(combining high energy and low energy 

regime)

A. Romanenko, et al., PRL 130, 261801 (2023)
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Summary
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Summary

• Exciting time to be a part of world-wide efforts in the accelerator and quantum 

computing fields

• Current SRF R&D has the potential of making further dramatic advancements in 
many disciplines

– Superconducting qubits and sensors

– Materials

– Future accelerators

– Hardware development

– Cryogenics

– RF design and engineering

• We are continuing to push forward SRF technology and looking forward to the 

breakthroughs it will bring in the accelerator and quantum communities

D. Bafia | MSU/FRIB Seminar55 10/20/2024



D. Bafia | MSU/FRIB Seminar56 10/20/2024

Thank you for 
your attention!
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