NOVEMBER 15, 2024

PAVING THE WAY FOR NEXT-GENERATION ELECTRON ACCELERATORS AT ANL

Argonne Accelerator Institute & Argonne Wakefield Accelerator **PHILIPPE PIOT, FOR THE AWA TEAM**

DEPARTMENT OF Argonne National Laboratory is a
NERGY U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

PREAMBLE…

Talk outline

- Introduction & Background
	- Bright beams
	- Applications
- Research on e-beam @ANL
	- § Why & roadmap
	- § Some highlights
	- § Opportunities
- Doing research @ANL
	- Visiting us (~4 hr from MSU!)
	- Working with us

U.S. DEPARTMENT OF Argonne National Laboratory is a CHARGY U.S. Department of Energy laboratory

2

OVERVIEW OF ARGONNE

An Ecosystem with Opportunities for Synergistics Research

■ Materials, **Nanoscience** ■ Leadership **Computing**

- § Nuclear & High-Energy Physics
- Photon Science

- § Multidisciplinary national laboratory
- § Several particle accelerators that serve as backbone for research: from flagship user facilities to "sandbox" facilities

ACCELERATOR PORTFOLIO AT ANL A unique and broad set of accelerator facilities & expertise

- § National user facilities: APS & ATLAS
- § Accelerator accessible to collaborators: LEAF, EM
- § Facility that supports lab R&D:
	- **A**ccelerator **D**evelopment **T**est **F**acility
	- **RF T**est **S**tand
	- **L**inac **E**xtension **A**rea
	- **I**njector **T**est **S**tand
	- **A**rgonne **W**akefield **A**ccelerator

PARTMENT OF Argonne National Laboratory is a
ERGY U.S. Department of Energy laboratory

4

THE ARGONNE ACCELERATOR INSTITUTE (AAI) Advancing Particle-Accelerator Science & Technology

- § Much of Argonne research, and the scientific community at large, depends on particle accelerators
- AAI's mission is to advance the science and technology of particle accelerators
- § AAI's areas of focus include:
	- **Education:** Build a steady stream of accelerator scientists and engineers
	- **Accelerators for discovery:** Develop nextgeneration accelerator-based instrument for fundamental research
	- **Accelerators for society:** Explore societal use of particle accelerators

INTRODUCTION & BACKGROUND

BRIGHT BEAMS

Some definition & concepts

ELECTRONS FOR MICROSCOPY/DIFFRACTION

Electrons to probe the structure of matter

§ Low energy (keV to MeV) bright electron beams behave as wave, figure of merit is brightness and lateral coherence

$$
L_{\perp} \simeq \frac{\hbar}{mc} \frac{\varepsilon_{\perp}}{\sigma_{\perp}}
$$

• $L_1 \sim a$ lattice spacings of the sample

■ Serves as primary probe to explore structure of matter at the atomic scale

(Image by Argonne National Laboratory.)

§ On going step is to produce fs-scale bunches for high-resolution time-resolve molecular movies

NERGY Argonne National Laboratory is a
NERGY U.S. Department of Energy laboratory
LLC managed by UChicago Argonne, LLC

ACCELERATOR-BASED LIGHT SOURCES

Electrons as source of photons

■ Radiated power due to centripetal acceleration (i.e. in B field) scales as

> $P \propto \mathcal{E}^4$ e- beam energy

- § Synchrotron radiation emitted in bending magnet
- § Synchrotron radiation emitted in undulators

 $\lambda_n \simeq$ $\frac{n\lambda_u}{2\gamma^2}(1+\frac{K^2}{2})$ **Lorentz** factor radiation wavelength undulator period DESY

 $\frac{1}{2}$

undulator parameter

ACCELERATOR-BASED LIGHT SOURCES

The free-electron laser: enabling coherence

Bright electron sources

FEL performances scales with e- beam brightness $\rho_n \propto B$

Short-period undulators

 $\lambda \propto \lambda_{\rm u}/\mathcal{E}^2$

radiation wavelength

undulator period

High-gradient accelerating structures

final e- beam energy

- High-frequency conventional accelerators
- Wakefield accelerators

ENERGY-FRONTIER LINEAR COLLIDERS

Probing the standard model and beyond

■ Figure of merit is luminosity

$$
\mathcal{L} \propto \frac{P}{\mathcal{E}} \frac{N}{\sigma_x \sigma_y}
$$

 Γ

 \mathbf{N} \mathbf{T}

P: beam power σ : beam sizes : number of particle/bunch

- \blacksquare The luminosity is ~proportional to the beam 4D brightness programs
- § Next-gen collider at the energy frontier 10 TeV center-of-mass relies on bright bunch generation and transport Damping rings

RESEARCH ON ELECTRON ACCELERATORS: MOTIVATIONS & HIGHLIGHTS

RESEARCH ON E-BEAM

Motivations

Advanced acceleration: high-gradient highefficiency acceleration

Beam production: brightness & high charge

Beam manipulation & diagnostics: shaped-beam distribution, emittance control and repartitioning

Midterm research with immediate impact

Preparing for next accelerator facilities

Enabling new mode of operation/capabilities for current facilities

Developing a testbed for R&D Accelerator Science and Engineering

Short term research with immediate impact

Improving beam diagnostics & controls ML-driven Autonomous operation Upgrade/enhancement of current facilities

INTRA-LAB COLLABORATION Example of autonomous control of particle accelerators

14

SHORT TERM RESEARCH OPPORTUNITIES

Enabling APS at its full performance

- The APS storage ring was recently upgraded and is in its commissioning phase
- Lowest emittance ring in the world! Operate in the diffraction limited mode

$$
\varepsilon_u \simeq \lambda/(4\pi)
$$

- It will take a few years to fully deploy APS capabilities
	- New fast (>kHz) feedback system for beam stabilization
	- R&D on phase-space diagnostics
	- Autonomous operation enabled by Machine Learning (on going)

RESEARCH ON E-BEAMS

Opportunities at APS

- § **BOOSTER**: energy ramp to 6 GeV for injection in
- § **Linac**: generates ~400-MeV electron bunches organized as a 15-ns train of bunches

SHORT TERM RESEARCH OPPORTUNITIES

Electron sources developments

- **Improving injector chain to support** reliable high charge operation
- Current electron sources are based on thermionic emission slow turn on/off
	- \rightarrow fills many RF bucket
	- \rightarrow large energy spread
	- \rightarrow need alpha magnet to reduce spread and microbunches duration
- **Example 2** Alternate electron photoemission electron source available and will be restarted in the summer 2025
- Paths & limits to ultimate brightness?

SHORT TERM RESEARCH OPPORTUNITIES

Electron sources R&D @APS

- Photoemission can generate high charge bunches
- § Optimization of laser shaping and accelerator parameters \rightarrow potential for bright beam generation \rightarrow R&D on future light source (FLS) concepts

§ Synchronization of laser with RF at the 100-fs time scale, nonlinear optics, and physics of photoemission using the Injector Test Stand (ITS)

PATH TO BRIGHTER BEAMS?

Experimental opportunities at APS

§ Scaling of beam brightness:

4D beam brightness (*ideally* invariant)

field experienced at emission (controlled by applied accelerating field)

depends on ab-initio aspect ratio of the beam mean-transverse energy [a property of the emitting surface (photocathode)]

- § Two R&D directions:
	- R&D new photocathodes (decrease MTE)

 $\blacktriangleright \mathcal{B} \propto$

- **Work on electron source to support higher E-fields** (typical E~100 MV/m)
	- Limited by breakdown
	- Other limitation comes from photocathode physical and chemical topologies (e.g. surface roughness, or non uniform quantum efficiency)

PARTMENT OF Argonne National Laboratory is a
ERGY U.S. Department of Energy laboratory

GENERATING HIGH FIELD WITH WAKEFIELDS

Wakefield: radiation field generated due to boundary conditions

Two methods for producing high-peak electric field

- Collinear Wakefield Acceleration (CWA)
	- On-beamline for both bunch
	- **Near-field interaction scalable to THz**
	- E fields ~GV/m demonstrated
- § Two-beam Acceleration (TBA)
	- Based on a conventional approach
	- High-power e.m. pulses generation based on wakefield
	- **Far-field interaction need technologies**
	- Two parallel beamlines

OF Argonne National Laboratory is a
MU.S. Department of Energy laboratory
managed by UChicago Argonne, LLC

§ All these techniques are [part of Structure Wakefield Acceleration (SWFA)

OVERVIEW OF AWA

A facility with unique capabilities

§ **Drive beam**:

Ø**Backbone accelerator**

 \ge ~60 MeV, bright or high-charge (1 pC ~100 nC) bunches

§ **Main beam**:

ØHigh-quality 15 MeV bunches ØnC-level charges

AWA: HISTORICAL NOTES insensitive acceleration regime **Groundbreaking Science paired with** Ultra-high gradient
F guns (Tan - 1 XRF guns (Tan et al., 2022,
Shao et al., 2022, **Technological Advances** Shao et al. 2021) 600 MW RF power Observation of reversed
akefield pulse (Lu.ot...) 1st demo of beam-driven (Picard et al, 2022) collinear wakefield acceleration in High-efficiency
akefiold Diservation of reversed

Wakefield pulse (Lu et al, 20 19) wakefield acceleration Wakefield acceleration plasmas and dielectrics
Plasma wakefield
acceleration condension wakefield Staging of SWFA Backward port Astrophysics experiment
(Gorham et al. es (Jing et al. 2018) Forward port $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$ Prietectric wakefield (Gort
Perist Chain et al 1988^{TOP VEW} Gorham et al. 2000) acceleration $(Resenzweig. et al 1988)$ Perfect Conductor Drive T_{train} ang_{ular}
s^{Stati}ons Drive $\prod_{i=1}^l$ ^{"High-brightness" upgrade
- (gun, linac, LLRF |-} Where Bean Dring Ban ¦ t⊌ ╹High-power RF
^{)ulse} mer: Frive Train #1+2 on (gun, linac, LLRF, laser)
s
s $\sum_{\text{hom}_{\text{all}}}$ Cross-plane phasepulse manipulations poiyethylene -0.5_m space manipulation & High-charge bunch
train genes : Schottky-enabled train generation itness Beam Delay (Psec) shaping high-charge bunch
Ieration via ph photoemission
h
anergy upgrade generation via photoemission : Device Test Area 15 MeV Mai 70 MeV Drive Photoiniector Photoinjector 0.001 - 100 nC Charg Drive and witness bunch production Teststand **Reconfigurable Switchvard** Emittance Exchange ≝≏ Test Section Snectromete `nectrometer

1 mote

RF GENERATION

J. Shao et al., 10.1103/PhysRevAccelBea

High-peak-power short RF pulse from wakefield

• Principle: Coherent stacking of wakefield pulse produced by bunches within a train

- Routinely produces 300 MW peak power (can generate up to 600 MW) at 11 .7 GHz
- Can generate power at harmonic of 1.3 GHz (7.8 and 11.7 GHz done) other frequency need R&D

HIGH CHARGE BUNCHES

The enabling technology for high-power RF pulses

- In-house research often require high-charge bunches
	- \cdot ~50 nC/bunch in single-bunch mode
	- Trains of 8 (possibly 16) high-charge bunches with 769 ps spacing (1.3-GHz RF period)

- Bunches are produced from a 1.3 GHz RF gun with ~80 MV/m field with $Cs₂Te$ photocathode
- § Photocathode laser up to 5 mJ UV pulses

HIGH-GRADIENT X-BAND GUN

A path to bright beams enabled by TBA

- § Development of a 1.5-cell X-band photogun (Xgun) powered by short rf pulse (9 ns), via TBA technique.
- § High gradient (>350 MV/m) achieved in 2020, estimated from RF calibration.
- Stable beam produced in 2021, with highest gradient (**388 MV/m**) achieved and verified by beam energy measurements.

Note: the current state-of-the-art S-band gun operates at a gradient of 140 MV/m.

STAGING OF TWO-BEAM ACCELERATION

A large integrated experiment combining two beamlines

- **Excitation of high-field in various structures** via two beam acceleration or collinear wakefield field acceleration.
- Demonstrated staging in two subsequent accelerating module power.
- Staging scalable to any number of accelerating modules w/ proper RF distribution.

Planned multi-staged acceleration experiment to 500 MeV C. Jing et al. 10.1016/j.nima.2018.05.00 **SENERGY** U.S. Department of Energy laboratory 27

SYNERGIES OF SWFA APPLICATIONS

Address Linear collider and future light source needs

- § SWFA is a viable candidate for a wakefield acceleration at kHz driven by an SRF linac – ASTAR project based on collinear wakefield acceleration.
- SWFA in two-beam acceleration configuration offers a pathway toward a compact "semi-conventional" FEL - work on electron source and FEL design in progress.

A high repetition rate millimeter wavelength accelerator for an X-ray free-electron laser

A. Zholents, a,1 S. Baturin, b,c S. Doran, a W. Jansma, a M. Fedurin, d M. Kasa, a K. Kusche, d S. Lee, a, e A. Nassiri, a P. Piot, a, b B. Popovic, a M. Qian, a A. Siy, a, f, s S. Sorsher,^a K. Suthar,^a E. Trakhtenberg,^a G. Waldschmidt,^a J. Xu^a

OPPORTUNITIES

Applications to photon science and high-energy physics

U.S. DEPARTMENT OF Argonne National Laboratory is a
 ENERGY U.S. Department of Energy laboratory

BEAM ON DEMAND

OLNERUT

ne TIC

G. Ha, et al., 10.1103/PhysRevLett.118.1

LONGITUDINAL PHASE-SPACE SHAPING

Cascaded emittance-exchange beamline

- **Two consecutive EEX beamline with** quadrupole/multipole-magnet insertion
- The strength of the magnets provides precise control over the longitudinal phase space distribution
- Experiment:
	- Demonstrated chirp LPS-chirp control using quadrupole magnets (no RF!)
	- Controlled 3rd nonlinear correlation in the LPS using an octupole magnet
- Applications:
	- Improve transformer ratio
	- Mitigation of beam break-up instability

ML-BASED DIAGNOSTIC

ML-based 4D phase-space reconstruction

 $5.0 -$

EMERGING NEW OPPORTUNITIES

Transdisciplinary expertise enables *exciting* **opportunities**

Enabling new opportunities within the APS complex (ASD/HEP)

Exploring technologies for ultrafast electron scattering (NST, HEP, PHY)

Next-gen accelerators for energy frontier & light sources (HEP. APS)

Applying cosmic-frontier detectors to accelerator (HEP, APS)

DOING RESEARCH IN ACCELERATOR SCIENCE & ENGINEERING AT ANL

OPPORTUNITIES

Collaborations (lab- versus university-driven)

PCB layout

cathode) or cleaning

- Broad infrastructure and expertise
- All topics mentioned have opportunities for MS or PhD research

LS. DEPARTMENT OF Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory

INITIATING COLLABORATION Students are integral part of the ANL fabric

- Students provide a path to expanding research at the lab; either to wor driven projects or as part of broader collaboration with university & indu
- Possible paths for graduate students:
	- SCGSR (DOE): usually work with university (faculty/student) to write proposal (the AAI can support few weeks visit for preparing such pro
	- University-funded/university-driven collaboration to perform researc of ANL groups: more flexibility on project selections (as long within A $competencies, and related to ANL mission) – AAI can help with prop$
	- University-funded ANL-driven collaboration usually joint proposal funding agency
	- AAI-supported Ph.D: research needs to focus on a project aligned w strategic planning

§ **If you have any interest let us know accelerator@anl.gov !**

Thank you for your attention.

This research was conducted at Argonne National Laboratory and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

