

The EIC, A High-Intensity Collider: A Good RF Challenge to Have (there may even be solutions)

Zachary Conway On behalf of all EIC RF Systems Personnel & Many Others

FRIB Seminar 21 February 2025

Electron-Ion Collide

Outline

- What is the DOE EIC Project trying to build? When?
- Comparisons to other high intensity colliders/synchrotrons.
- ESR 591 MHz 1-cell cavity SRF system.
- A brief overview of other EIC challenges.

What is the Electron Ion Collider?

EIC required >70% polarization for light ions and electrons, availability of ion beams from deuterons to the heaviest stable nuclei, variable center of mass energies ~20 to 100 GeV (upgradable to 140 GeV for e-p), high collision luminosity $10^{(33 \text{ or } 34)} \text{ cm}^{-2} \text{ s}^{-1}$, and possibly more than on interaction region.

EIC Figure of Merit ~Luminosity x Polarization²

Electron-Ion Collider

EIC Assumptions

- Reuse RHIC infrastructure and hadron source, assume cryoplant and select other facilities are well-maintained:
 - Polarized (>70%) protons and He ions to be accelerated through the BNL Alternating Gradient Synchrotron with high efficiency.
 - Ion species available: protons through Uranium.
- Experimental community expectations:
 - Arbitrary bunch-by-bunch spin patterns.
 - Minimum electron beam energy at collisions: 5 GeV.
 - Maximum electron energy of <u>18 GeV is available on day one.</u>
 - Proton beam energies range from 41 to 275 GeV (110 GeV/u, ions)
- Leading EIC RF Technical Challenges:
 - High electron bunch intensities: e = 28 nC/2.5 A, 1160 bunches out of 1260.
 - Increase # of ion bunches to 1160 (110 in RHIC) with up to 6.9x10¹⁰ particles per bunch (1 A max).
 - High-Power SRF Cavities: 800 kW 2.0 K.
 - SRF Crab Cavities for a 25 mrad crossing angle.
 - Low-noise precise RF field control: coupled issue for LLRF, HPRF & RF cavity systems.
 - Transient Beam Loading

Electron-Ion Collider

EIC RF Systems

The Project is pre-13 MeV Linac to Beam Stop CD2 and in the RCS to ESR Transfer design phase. Hadron Cooling, IR02 – 9 CM 591 MHz acceleration Many systems are HSR 41 GeV **Bypass** cavities & 4 CM 1773 MHz lectron still developing. Storage 3rd Harmonic Cavities Ring (ESR) **3 GeV LINAC Electron Cooler, IR02 -**EIC 400 kW Amplifier 197 QWR, 591 SC Cavities (Not shown) Detector Interaction 3 CMs, ERL Injector, IR02 Regions Hadron Storage Electro Ring (HSR) epic Electron Electron Storage Ring & Rapid Cycling **EIC LLRF DAC Clock** Hadron Storage Ring Synchrotron for Crab Cavities (RCS) 591 MHz 800 kW 2 K RHIC - 28 MHz Hadron Storage Ring -Cell Cavity Cryomodules HSR 24GeV acceleration cavity "Warm" Injection Line 24.6 MHz Accelerating ESR = 17 CMs, IR10 **IR04** Cavity, IR04 HSR = 5 CMs, IR10Crab **IR06** HSR - 49.2 HSR ESR HSR -Cavities Rapid Cycling (Cavities/CMs) (Cavities/CMs) 197 MHz & 394 MHz MHz and (per IR) 197 MHz Synchrotron **Crab Cavity** 98.5 197 MHz 8/4 bunch 591 MHz Five-Cell Cryomodules MHz bunch 394 MHz 4/4 2/2 compress Acceleration Cavity splitter ion cavity Cryomodule cavities **IR04** 3 CMs, IR10 **IR04**

Emergent Scope Not Listed (Electron Injection Systems, Pre-Cooling, Stochastic Cooling, RF dampers/correctors, etc)

21 February 2025, FRIB Seminar

Electron-Ion Collider

RF System Highlights

EIC RF Challenges

Electron-Ion Collider 21 February 2025, FRIB Seminar

SRF Cavity Voltage & RF Parameters

RF Parameter	18 GeV	10 GeV	5 GeV
dE per turn (MeV)	36.95	3.52	0.95
# of 1-Cell Cavities	17	17	17
Voltage Per Cavity (MV)	3.62	1.27	0.57
Synchronous Phase (Degrees)	143	170	173.1
Total Voltage (MV)	61.5	20.3	7.9
Installed Voltage (MV)	68		
E _{peak} (MV/m)	39.2	13.8	6.2
B _{peak} (mT)	74.2	26.1	11.7
R/Q (Ω)	78	78	78
Cavity Dynamic Load (W)	9.0	1.5	0.3
Cavity Power (kW)	651	728	224

Electron-Ion Collider

ESR 591 MHz Fundamental RF System

Electron-Ion Collider 21 February 2025, FRIB Seminar

Overview of Challenges

- How to coupler high power RF to the beam?
 - Keep Nb superconducting
 - Require feasible 2.0 K cryogenic plant(s).
- How to damp the beam wakefield?
 - Don't rock the boat nor the following boats. (boat = bunches)
- How to control the RF fields to the required accuracy and precision?
 - Transient beam loading.
 - Crab driven transverse instabilities.

2 Fundamental RF System Challenges R&D

ESR Main RF System

- Fit into RHIC IR10
- Superconducting Radio-Frequency Systems
- Provide 68 MV of voltage and 10 MW of 591 MHz power, not simultaneously
 - 4 MV per SRF cavity cell.
 - Peak surface fields of ~40 MV/m and ~80 mT.
 - Loaded Q = $2x10^5$
 - Requires strict voltage management (aka don't contaminate your SRF!!!)

HSR/ESR Crab Cavities

- Fit close to detector in IR6.
 - Superconducting Radio-Frequency Systems
- 25 mrad
 - High voltage
- Some of the most challenging crab parameters a person could think up.

Electron-Ion Collider

21 February 2025, FRIB Seminar

591 MHz 1-cell Cavity Prototype

197 MHz Crab Cavity Prototype

High Current Electron Storage Rings

Ring	PEP-II LER	KEKB LER	SuperKEKB LER	EIC ESR	FCC-ee
Energy (GeV)	3.1	3.5	3.6	5-18	45-200
Design Beam Current (A)	2.14	2.6	3.6	2.5 (5-10 GeV)	1.28 (45 GeV)
Achieved Beam Current (A)	3.2 (2008)	2.0	1.3 (2022)	TBD	TBD
Bunch Charge (nC)	14	13	6	28	32
Circumference (m)	2,199	3,016	3,016	3,833	91,000
Cavity Type	Warm	Warm	SRF	SRF	SRF
8 th June 2022, 4.65x10 ³⁴ cm ⁻² s ⁻¹ CERN LEPP 50 nC per bunch					

Electron-Ion Collider

Space for Most SRF Systems – IR10

Electron-Ion Collider 21 February 2025, FRIB Seminar

591 MHz 1-Cell Cavity Cryomodule

591 MHz SRF Cryomodule - Operation

- ESR 61.5 MV, 5-18 GeV, 2.5 A, 27.6 nC/bunch, 290/580/1160 bunch fill patterns out of 7560 buckets, ~1 μs abort gap.
- ESR RF System must maintain 7.7 mm bunch length and make-up the ~9 MW synchrotron radiation losses and ~ 1 MW beam RF losses.
- 17 2.0 K SRF cryomodules capable of operating at 800 kW continuously = dual 500 kW FPCs
- World's highest power beam-line absorbers (RF dampers), ~36 kW with current requirements.

Electron-Ion Collider

Fundamental Power Couplers FPCs

Electron-Ion Collider 21 February 2025, FRIB Seminar

Required Power Per Cavity

RF Parameter	18 GeV	10 GeV	5 GeV
dE per turn (MeV)	36.95	3.52	0.95
Beam Current (A)	0.23	2.50	2.50
Synchrotron Rad Power (MW)	8.38	8.80	2.38
HOM Power per Cavity (kW)	1.0	33.5	30.0
Total Power Loss (MW)	8.40	9.37	2.89
Power Per Cavity (kW, ÷17)	494	551	170
20% Overhead (kW)	593	661	204
10% Transmission Losses (kW)	652	728	224
Power Per Coupler (kW, ÷2)	326	364	112

SLAC-PUB-2884 (Rev.) November 1991 (A)

HIGH ENERGY ELECTRON LINACS: APPLICATIONS TO STORAGE RING RF SYSTEMS AND LINEAR COLLIDERS

Perry B. Wilson Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

Electron-Ion Collider 21 February 2025, FRIB Seminar

500 kW Power Couplers

- Need to couple a 400 kW 591 MHz travelling wave from room temperature to a 2.0 K resonator in ~4.5 in (11.4 cm)?
- Need high electrical conductivity (low RF losses) and low thermal conductivity...
- Wiedemann-Franz Law (1853) $\frac{Thermal \ Conductivity}{Electrical \ Conductivity} = L * T, L \sim 2.4x 10^{-8} V^2 K^{-2}$
- If we do nothing kWs of extra 2K load.

Electron-Ion Collider 21 February 2025, FRIB Seminar

E. Drachuk

Comparison of Thermal Loads – Outer Cond.

No Helium Counter Flow						
Thermal Load Static Dynamic						
2 K	3	12				
50 K @ 30 mm	11	11				
Water	-20	340				

With Helium Counter Flow (Small Geometry Changes)						
Thermal Load Static Dynamic						
2 K 0.2 3						
50 K @ 30 mm 3 3						
Water -90 260						

 Balancing the supercritical He flow's change in temperature (heat capacity/time) with the static thermal load and RF dissipation gives minimum physical distance = 3.5" to keep 2K static load less than 10 W.

Electron-Ion Collider

21 February 2025, FRIB Seminar

Z. Conway

E. Drachuk

EIC FPC Operation

- EIC is building Al₂O₃ cylindrical window FPCs now.
- BeO conditioning example.
- EIC design for 500 kW, operate @400 kW continuous wave (cw)

S. Belomestnykh, SRF'07

Electron-Ion Collider

Transient Beam Loading

Transient Beam Loading

- Abort gaps in colliding bunch trains (1160 bunches out of 1260, ~100 μ s gap).
 - Drive phase and amplitude transients in RF cavities.
 - Varying bunch arrival times at IPs.
 - Errors in crabbing.
- Voltage induced in RF cavity by a bunch: $V_{b0} = q \omega_0 \frac{R}{Q_0}$
- Voltage seen by the bunch: $\tilde{V}_c = \tilde{V}_g + \frac{1}{2}\tilde{V}_{b0}$

$$\tilde{V}_{c} = \tilde{V}_{g} + \frac{1}{2}\tilde{V}_{b0} + \tilde{V}_{b0}e^{-\delta}e^{i\Delta\varphi}; \qquad \lim_{n \to \infty} \left(\tilde{V}_{c}\right) = \tilde{V}_{g} + \tilde{V}_{b0}\left(\frac{1}{1 - e^{-\delta}e^{i\Delta\varphi}} - \frac{1}{2}\right)$$

Electron-Ion Collider

ESR 591 MHz 1-Cell No Feedback – Beam Loading

T. Mastoridis

Electron-Ion Collider

Alternating Gradient Focusing

- Swenson, Alternating Phase Focused Linacs, Particle Accel **7**, **61-67**(1976)
 - Bunches which are accelerated at the peak of the RF voltage get maximum acceleration, but little longitudinal and transverse focusing.
 - Bunches which are accelerated when the RF voltage crosses 0 get little acceleration (deceleration) but lots of transverse focusing and longitudinal defocusing.
 - Good (1953), Mullet (1953, unpublished), Fainberg (1956), Bousard (1970)
 - Increase acceptance for low-charge state heavy ions = Argonne 2004, Ostroumov, Shepard, Kolomiets, Masunov (MEPhI).
- Can be applied to synchrotrons too.
 - KEKB, 2010

Figure 2: Phasor representation of the cavity voltage. The synchronous beam phase of one cavity is reversed. Each cavity has the large RF voltage, while the total voltage is kept as low as the required value.

Y. Morita et al., IPAC'10

Electron-Ion Collider

Reverse Phasing

- Introduced by KEKB
 - Reverse synchronous phases of several storage ring RF cavities.
 - Total voltage is kept as low as the designed value.
- Merits
 - Each RF cavity run with high voltage over broad range of beam energies/currents.
 - No need to vary external or loaded quality factors.
 - Each RF cavity provides equal beam power.
- Tested up to ~1.2 A at KEK for 5 days, but not used in operation.
- Things to consider:
 - Higher voltage.
 - RF cavity trips.
 - Contamination.

Electron-Ion Collider

21 February 2025, FRIB Seminar

D11B Klystron power

φ_s

Reverse phase (Vc=1.56 MV)

Y. Morita et al., IPAC'10

Z. Conway

Reverse phase cavity

Reversed

Normal mode (Vc=1.18 MV)

Crab)

ing

σz測定

150

100

50

Beam abort test

(11:36)

0-phase

Overload

-¢s

D11A trip

(15:05)

D11B trip

(15:16)

150

100

EIC Reverse Phase Operation

RF Parameter	Focusing	Focusing/Defocusing
Electron Energy	10 GeV	10 GeV
Particles Per Bunch	3.4x10 ¹¹	3.4x10 ¹¹
# Bunches	580	580
RF Frequency	591 MHz	591 MHz
Harmonic Number	7560	7560
# Cavities	18	13/5
Energy Loss Per Turn	3.88 MeV	3.88 MeV
Total Voltage	28.9 MV	28.9 MV
Voltage per Cavity	1.6 MV	3.7 MV
Cavity R/Q	74	74
Loaded Quality Factor	6.68e4	2.4e5
∆f	-32.7 kHz	-14.5/+14.5 kHz

Electron-Ion Collider

ESR with Feedback – Beam Loading

Electron-Ion Collider

Instabilities, Dampers, and Wakefields

Beam Intensity Limitations

• Single Bunch

- Short-Range Wakefields (Broad-Band Impedance)
 - Microwave Instabilities
 - · Inductive and resistive components.
 - 1960's Theory for Coasting Beams: Neil, Sessler, Keil & Schnell
 - 1975 Adapted to Bunched Beams: Boussard
 - 1973-1977 mode-coupling: Sacherer.
 - Integrated theory: Pelligrini, Wang, and Krinsky
 - Transverse Mode Coupling Instabilities
 - Resistive wall, geometric impedance
- Beam Intensity Limitations
 - Long-Range Wakefields (Narrow-Band Impedance)
 - Longitudinal/Transverse Coupled-Bunch Instabilities (HOMs of RF Cavities, Main Mode of Crab Cavities, Resistive Wall,...)
 - Ion Instabilities (vacuum, bunch patterns, collimators)
 - Electron Cloud (vacuum chamber, resistive wall surfaces, ...)

Energy spread σ_{δ} and bunch length σ_s as a function of single-bunch current

A. Blednykh & M. Blaskiewicz

Electron-Ion Collider

Damping Requirements

Electron-Ion Collider

BLA – Damping HOMs & Wakefields

	LBLA	SBLA 1	SBLA 2
Radius (mm)	137	75	75
Length (mm)	240	120	240
HOM power (kW)	34.4	26.5	38.3
Power flux (W/mm ²)	0.19	0.47	0.34

J. Guo

LDRD 274 mm Diameter BLA

W. Xu et al, Phys. Rev. Accel. Beams 27, 031601

Electron-Ion Collider

Beam-Line Absorbers – Damping Wakefields

LDRD Funded Large Diameter Absorber

Testing BLA to progressively higher powers

BLA Arc Damage & Cracking

Electron-Ion Collider 21 February 2025, FRIB Seminar

591 MHz 1-Cell Cryomodule – Requirements

- Issues:
 - Post FDR: Cryomodule does not meet ESR beam stability requirements – φ150 mm beam line absorber.
 - φ150 mm shielded bellows overheating.
 - Multipacting concerns at cell equator.
 - Tuner lifetime concerns due to cavity stiffness.
- Delayed 591 MHz DVC testing leaves unresolved:
 - Multipacting concerns at cell equator.
 - Tuner lifetime concerns due to cavity stiffness.

Future Cryomodule Damping Loads

Cryomodule Broadband Losses and RF Power Emitted from Beam Ports					
Total Loss Factor (V/pC)	1.171				
Loss Factor Without 591 MHz Cavity Resonance (V/pC)	1.034				
Total HOM Power (2 Cavity Cryomodule) (kW)	72.4				
Downstream Beam Line HOM Power (kW)	16.6				
Upstream Beam Line HOM Power (kW)	6.4				

Electron-Ion Collider

Crabbing KEK, Hosoyama et al., APAC'98

Electron-Ion Collider 21 February 2025, FRIB Seminar

EIC RF Crab System

- Correct bunch orientation @ collision for the crossing angle.
- 4 x 197 MHz crab cavities and 4 x 394 MHz crab cavities each side of HSR IP.
- 1 x 394 MHz crab cavity each side of ESR IP.
- Bunch rotation (crabbing) via transverse deflection.

Electron-Ion Collider

Crab Cavities

Parame	ter	EIC		HL-LHC	ILC		
Crossing Ang	le (mrad)	25 (37.	5)	0.59	14	197 MHz Crab Cavity Prototype	
Frequency	(MHz)	197 & 3	94	400	1300/2600 /3900		
Voltage (MV)	33.8 @ 1 2.9 @ 3	197 94	6.8	7.4 @ 1300		
Longitudinal S	Space (m)	15 (HSI 4.5 (ES	R) R)	3.5	3.8		
Transverse S	pace (m)	1.0 (HS 0.7 (ES	R) R)	0.194	0.197		
Damping	Damping EIC		HL	LHC	ILC)	
Longitudinal	316 kΩ 26 kΩ-GH	(HSR) z (ESR)	2.	4 ΜΩ	-		
Horizontal	2.64 MΩ/n 0.96 MΩ/r	/m (HSR) /m (ESR) 1.5		MΩ/m	48.8 MΩ/m (250 Ge 195.2 MΩ/m (1 TeV		
Vertical	13.2 MΩ/n 0.96 MΩ/r	m (HSR) 1.5 m (ESR) 1.5		MΩ/m	61.7 MΩ/m (250 GeV) 246.8 MΩ/m (1 TeV)		

Electron-Ion Collider

21 February 2025, FRIB Seminar

B. Xiao, S. De Silva, N. Huque

Crab Cavity Field Control

- Crab cavities have large transverse impedances and the beta functions at the cavity are large = strong transverse instabilities.
 - M. Blaskiewicz, Instabilities Driven by Fundamental Crabbing Mode, BNL-222221-2021-TECH
- High gain RF feedback needed to reduce effective cavity impedance by ~2500 (68 dB).
 - Amplify noise injected into the system by LLRF, cross talk, etc.
- One-Turn Delay Feedback (OTFB) required to further reduce transverse impedance at the betatron sidebands by an additional x10 (20 dB).
- Transient beam loading.
 - T. Mastoridis: OTFB and low-delay RF feedback can address transient with moderate peak RF.
- Crabs themselves can limit luminosity lifetime due to low level of noise injected into the fundamental crabbing mode.
 - T. Mastoridis: BNL-222748-2022-TECH

Crab Cavity Field Control

Sample Noise Thresholds

	σ _{∆φ} (µrad)	σ _{ΔΑ} (1e-6)
HL-LHC	8.17	13.30
ESR 5 GeV	805	12700
ESR 10 GeV	860	13600
ESR 18 GeV	548	7060
HSR 41 GeV	3.09	10.1
HSR 100 GeV	2.69	9.36
HSR 275 GeV	1.75	7.07
Au 41 GeV	18.7	39.4
Au 110 GeV	5.12	17.8

T. Mastoridis et al, BNL-224087

Electron-Ion Collider

LLRF Noise

EIC 197 MHz Crab Cavity Noise Requirements

T. Mastoridis, NAPAC'22

RHIC 100 MHz Master Clock vs Eval Master Clock

F. Severino

Electron-Ion Collider

That's All Folks

Electron-Ion Collider 21 February 2025, FRIB Seminar

Closing Remarks

- Most of what we discussed today cannot be proven until EIC operations start.
- FPCs operating at ½ the EIC requirement and lower frequencies took a while to attain stable operation.
- Beam line absorbers: \$arned if you do, \$arned if you don't.
- RF Control will push limits of amplifiers, RF delivery components, and control system.
- Crab cavities have enough challenges, we will find more.
- None of this would be possible without an excellent EIC RF Systems team enjoying strong support from JLab/BNL EIC: Accelerator Physics, Controls, Cryogenics, Facilities, Accelerator Subsystems, etc.
- The people make this work and are our most precious resource.

ESR With Feedback – RF Power

Electron-Ion Collider