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Outline

• Machine Learning to improve operations

– Minimize downtimes of target and accelerator

• What is Machine Learning

• Background: 

– First system: Differential Beam Current Monitor (University of Huddersfield)

• Use-cases in collaboration with JLAB

– Beam-based 

– High Voltage Converter modulator

– Target

– Cryo Moderator System
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Why Machine Learning at SNS

• Not all problems are (can be) well defined or understood

– System not well understood (cryo loop), models incomplete (target, HVCM)

– Large data sets that are hard or not suitable to process with classical methods

• Many improvements have 
been made over the years, 
but we still have downtimes 
can ML decrease downtimes 
even further?

– Proton Power Upgrade

– Second Target Station

SNS downtime statistics
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Machine Learning in a Nutshell

“AI leverages computers and machines to mimic the 
problem-solving and decision-making capabilities of 
the human mind.”

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

DEEP
LEARNING

“ML is a branch of AI which focuses on the use of data 
and algorithms to imitate the way that humans learn, 
gradually improving its accuracy.”

“DL as a subset of ML use neural networks with hidden 
layers to learn from vast amount of data.”

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
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Why is Machine Learning becoming more popular?

2. Annual Size of the Global Datasphere

1. Rise of GPU Computing

3. Open-Source Machine 
Learning Community

1https://blogs.nvidia.com/blog/2017/05/24/ai-revolution-eating-software/
2https://medium.com/analytics-vidhya/the-5-vs-of-big-data-2758bfcc51d
3https://devopedia.org/deep-learning-frameworks
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Machine Learning Types

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

• Classification

 Diagnostics
 Fraud detection

• Regression

 Prognostics
 Weather 

forecasting

• Clustering

 Customer 
segmentation

• Dimensionality
Reduction

 Structure 
discovery

• Dynamic 
Programming

 Robot 
navigation

• Environment-
based

 Game AI

Labeled inputs and outputs Unlabeled data Rewards system

• Slides from tutorial at SNS complete with demo code
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Backbone of ML: Artificial Neural Networks
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Single neuron: linear regression
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Neural Networks Training: Forward and Backward Pass
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• Outputs and ground truth data used to 
calculate the loss function

• Selection of the loss function depends 
on the problem:
• Mean Squared Error
• Mean Absolute Error
• KL – Divergence
• Maximum Likelihood

Deterministic

Probabilistic Λ = 𝑦 − ො𝑦 2
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𝑎2• Gradients calculated using 
chain rule

• Loss and activation functions 
must be differentiable (or have 
the gradients provided)

Backward

Forward

Lambda = loss function
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Machine Learning Performance Metrics

• Concepts:

– ROC curve: Receiver Operating Characteristic 
curve is a graphical plot that illustrates the 
diagnostic ability of a binary classifier system 
as its discrimination threshold is varied.

– True Positive Rate (TPR) = TP/P = TP/(TP+FN)

• TP= True Positives, P = Positives, FN = False Negative

– False Positive Rate (FPR) = FP/N = FN/FN+TP

• FP=False Positives, N=Negatives

• For SNS: FPR = FP/N ≈ FP(N+P) as N>>P

We want low FP or FPR and high TP or TPR

ROC curve showing the 
performance of the ML method
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ML Learning Projects at SNS Accelerator and Target

• PhD Student Miha Rescic (Huddersfield University, Rebecca Seviour) 

1. Errant beam prediction using beam current data (2015)

• BES Grant, PI: Sarah Cousineau

1. Beam-based: Predict errant beam, classify equipment faults

2. Target: Improve target modeling to increase lifetime

3. HVCM: Predict failure and prognostics to determine component lifetime remaining

4. CMS: Better controller algorithm to reduce downtime
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Beam-based: Using Differential Beam Current Monitor
• Goal

– Prevent cavity damage and avoid equipment down times

• Approach

– Expensive to install diagnostics per equipment. But equipment affects beam leaves fingerprint 

– Use existing diagnostics  Differential Beam Current Monitor

• Archives at full rep rate (LabVIEW FPGA and RT) when beam is aborted

Use before 
pulse as 
abnormal

DCM archives not only errant beam 
pulses but also up to 25 pulses before 

and two after  the before pulse 
becomes the “abnormal” class pulse

Differential Current Monitor to protect 
SCL from beam loss damage (2013)*
*Blokland, Willem, and Peters, Charles C. A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* 

ACCELERATOR. IBIC 2013 conference proceedings, pp921 to 924, Oxford, United Kingdom, Sep 16, 2013 - Sep 19, 2013
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Errant Beam metrics

• The DCM archives data:
1. When (Downstream – Upstream) > threshold 

• Beam loss in the SCL: 1111 events

2. When the pulse is truncated

• Beam loss upstream or aborted by another device: 1100 events

• Metrics: How well should ML perform

– March 2021, production was 26.4 days, 1.5% beam lost 

• 0.22% beam lost due to SCL beam loss

• 1.30% beam lost due to truncated beam 

– We need to predict a fraction of the errant pulses: TPR ≈  50%

– We shouldn’t add much down-time due to false positives

• An insignificant amount would be 0.2% of beam pulses

• but penalty is 4 pulses per abort 

 we want to achieve a FPR ≈ 0.05% Trip statistics derived from 
DCM data
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Method
– K-Nearest Neighbor Method using different distance functions L1, L2, and CC

Results

– Up to 75% success rate but very high FPR

 While there is indication that we find precursors, we abort too much beam

K-NN: Assign new data point class based on 
distance to training set data points

Credit: Wikipedia

K-NN Plot: Very typical of K-NN is to get better success 
when increasing K at first but eventually for large K it will 
mimic the ratio of good and bad pulses

Beam-based: Early Work by Miha: K-NN Method
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Beam-based: Errant Beam Work by Miha*
Method

– Random Forest classifier with 100 estimators

– Improvements: PCA, FFT, Voting, different dataset sizes

Results

– No SCL beam loss: 40/233 predicted trips, 6531 false 
alarms

– SCL beam loss: 20/27  predicted trips, 4133 false alarm

– (~5,184,000 pulses per day)

We predict 75% of SCL beam loss pulses with ~0.2% *4 of 
good beam aborted. 

ROC curve with preprocessing

Credit: Wikipedia

*M. Reščič, R. Seviour, W. Blokland, Improvements of pre-emptive 

identification of particle accelerator failures using binary classifiers and 

dimensionality reduction,, NIM-A,Volume 1025, 2022, 166064,ISSN 0168-

9002, https://doi.org/10.1016/j.nima.2021.166064.
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Beam-based: Next Phase 

• Approaches

– Beam Position Monitor phase data:

• Map upstream to downstream to detect abnormal 
pulses. If mapped version differs from measured, then 
we have an abnormal condition

– Differential Current Monitor data:

• Identify the faulty equipment using labeled Machine 
Protection System (MPS) data

• Siamese twin model to detect abnormal beam pulses

– This model looks at similarities of two inputs and provides you 
with a similarity value

BPM phase turn-by-turn data

Beam current waveform
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Beam-based: Uncertainty aware anomaly detection

• By using a reference pulse from the training set, 
we can compare a normal pulse to a normal 
reference pulse to see if they are still similar (if 
not, retrain)

• We can run multiple inferences of same pulse 
versus multiple references to majority vote

• Similarity allows to classify pulses not seen 
before

Siamese Model: 

DCM data: 60 Hz pulses sampled at 

100 MS/s
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Beam-based: Uncertainty aware anomaly detection

• Probabilistic model (Gaussian 

Approximation) adds 

uncertainty to similarity 

predictions

• Anomaly, red 1111, that has not 

been part of training set,  is 

identified correctly but has 

higher uncertainty

Deterministic Model Probabilistic Model

1100 events

 We can have very low FPR, 

e.g. 0.05% aka 0.2% of beam 

wrongly aborted, with ~50% of 

abnormal beam predicted*

*Blokland, W., Ramuhalli, P., Peters, C., Yucesan, Y., Zhukov, A., Schram, M., ... & Jeske, T. (2021). Uncertainty aware anomaly detection to predict errant beam 
pulses in the SNS accelerator. arXiv preprint arXiv:2110.12006.
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Beam-based: Field Implementation

Siamese model applied to multiple Normal references

Similar?

Similarity

Normal_1

Normal_N

Beam pulse

Uncertainty

Implementation in the field

• Installed second DCM (DCML) and fed it duplicate 
analog signals from beam current sensors

• Implement Siamese model on DCML RT

• Implement RF on FPGA (upcoming paper on development environment)

• Analyze all incoming beam current waveforms

5 Inferences with different 
references per beam pulse

Beam pulse

Normal_N

Pulse-by-pulse analysis on up/down 
stream both Siamese and RF

 We see certain events but not yet operational in 
terms of TP and FP
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Beam-based: BPM Phase Data
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• Use normal traces to model 
mapping from an upstream 
and downstream BPM

• Pass faulty traces from the 
trained model 

• Compare error between 
true phase and predicted 
phase

o Model: Multi-layered 
Perceptron

o Input: HEBT-BPM01 Phase
o Output: HEBT-BPM32 Phase
o Training: Normal Waveforms

…

…

…

…

…

Actual Waveforms
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Model Predictions

Training Inference & 
Post-processing

𝑅𝑀𝑆𝐸 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⇒ 𝑬𝒓𝒓𝒂𝒏𝒕
𝑅𝑀𝑆𝐸 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ⇒ 𝑵𝒐𝒓𝒎𝒂𝒍

Yucesan, Y., et al. (2022) “A Machine 
Learning Approach for Errant Beam 
Detection using Spatial Phase 
Deviation” Work in Progress.
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Beam-based: BPM Phase Data

Training and test performance 
on normal-to-normal mapping

Cross-validated model 
performance on target FPR

Precursors on 
fault 30 pulses 
before beam trip!

Results:
• FPR < 0.25 % while maintaining TPR ~45%

Phase Predicted vs Measured
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Beam-based; Equipment Fault Classification
Goal: identify the equipment causing errant beam 

• Unsupervised Clustering:

Signals

Confusion Matrix

…

• Convolutional Neural Networks (CNNs):
Training Test

In progress:
• Ok for finding 

anomalies 
might be ok for 
equipment 
classes

Use gradCAM* to generate 

heatmaps and see if heatmaps are 

different for different equipment

• Siamese model:

In progress:
• Weak 

classification 
performance

• Overfitting

Example of clusters

*Gradient-weighted Class 
Activation Mapping246

508 264

343

5917

32 3217

834
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High Voltage 
Converter Modulators

HVCM Issue:

• Capacitor degradation 
during the pulse time causes 
anomalies in the signals, 
that could potentially lead 
to catastrophic failure.  
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HVCM

• Research: How to minimize downtime due 
to the modulator 

• Approach:

– Abort beam before failure

– Prognostics: predict component health. 
Capacitors slowly drop in capacitance over a 
periods of years, then fail suddenly

• Status:

– Initial ML NN predicted HVCM failure
• But we had a high FPR >10%  promising there is info in 

the waveforms

– SPICE model of HVCM to research effect of 
capacitor values on measured waveforms

– Second approach with LSTM and Conv1D

Transistor failure due to 
transformer saturation

Failure prediction

70% True Positive Rate



2525

HVCM
ML Technique: Self-constructors: 

• Used mainly for dimensionality reduction, image noise removal, and 
anomaly detection (or binary classification). Latent space represents 
most important features. One type is the auto-encoder.



26

HVCM
• Recurrent neural networks perform well in time 

sequences.

• Train on normal data to make it reproduce 
normal data. If the output waveform is not 
close to the input waveform, then we have an 
anomalous waveform. 

• Conv1D will help to improve the latent space 
features.

• LSTM (Long Short Term Memory) will properly 
capture the time-series dynamics.

 Improved FPR but need more statistics

Radaideh, M. I., et al. "Time Series Anomaly Detection in Power 
Electronics Signals with Recurrent and ConvLSTM
Autoencoders." Digital Signal Processing (2022): Under 
Review.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=406
9225

Improved auto-encoder layout

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4069225
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Neural Net modeling of waveform:

Step 2: Training: Neural Network (NN) learns the 
relationship between capacitor values and 
waveforms

Step 1: Generate SPICE simulation data 

Step 3: Testing: determine component value. 

E.g. simulated waveform capacitance 

estimate of 1609 pF versus 1550 pF.

HVCM: Prognostics

• Plan:

– Determine effect of other circuit 
parameters: charge voltage, switching 
frequency and the transformer 
leakage inductances. This is where we 
expect ML to show its strengths.
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Target Machine Learning

• Research: How to increase target lifetime

• Approach:

– Use surrogate model to get faster simulation

• Develop multi-phase physics model for mercury with gas bubbles 

• Match strain measurements to verify the simulation based on model(Sierra with 
VUMAT)

• Train ML surrogate using polynomial approximations

• Status:

– Using HPC resources to execution model-based simulation and train 
surrogate

• Multiple different surrogate models are tested to identify the best metric and best 
model for the problems and design parameters
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Target: Mercury Vessel 

→ used to inject 
helium gas to 
reduce pressure 
and cavitation 
damage
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Front sensors die after few 
days of operation due to 
radiation damage reducing 
our diagnostics data
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Target:  Inverse Problem 

 Now: Equation of State Model for cavitation in mercury (3 
unknown parameters)

 Future: Rayleigh-Plesset Model for general bubble 
dynamics (8 parameters)

x1: Tensile cutoff threshold (Pa)
x2: Mercury Density (kg/m3)
x3: Mercury Speed of Sound (m/s)

Initial focus on the 3-parameter model&

We can use an accurate calibrated simulation to carry fatigue 
analysis and estimate target life and maintenance times*

*Mach, Justin, et al. "Fatigue analysis of the Spallation 

Neutron Source 2 MW target design." Nuclear Instruments 

and Methods Section A 1010 (2021): 165481.

&Radaideh, M. I., et al. “Bayesian Inverse Uncertainty Quantification of the Physical Model Parameters for 

the Spallation Neutron Source First Target Station”. https://arxiv.org/abs/2202.03959, Accepted in Results in 

Physics

Inverse Problem: find the model parameters (x) to minimize the difference between the measurements 
and the model

https://arxiv.org/abs/2202.03959
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Target: Surrogate Model*

*Radaideh, M. I., et al., (2022). Model Calibration with Evolutionary Neural 

Networks and Sparse Polynomial Expansions: Application to Mercury Spallation 

Target Solid Mechanics, Nuclear Instruments and Methods in Physics Research 

Section B, Under Review.

https://arxiv.org/abs/2202.09353

The method has four major parts:
1. Neural networks act as surrogate model to 

replace the expensive Sierra code. 

2. Sensor data collected from the target.

3. External optimization algorithm (e.g. 
genetic algorithms). 

4. Objective function brings 1-3 together. 

The objective function applies to the simulation 
parameters that make simulation and data 
close. 

Iteration
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https://arxiv.org/abs/2202.09353
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Cryogenic Moderator System Excessive turbine fluctuation

Long system
recovery time

H2 loops where trips registerturbine in the He loop

• Research: how to avoid long CMS trips 

• Approach:

– Not a lot of data to apply ML for predictions

• Use simulation to generate data

– Improve whole system modeling by 
combination of model and data-driven ML 
techniques

– ML-based controller

• Status:
– Building of the CMS model

System layout

H2 loop EcoSimPro
model
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CMS: thermal-hydraulic and data-driven models

EcoSim Simulation
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Summary

We presented four ML use-cases:

• Classification, Prevention, Surrogate, Prognostics, Controller

– All using existing data and systems

• Three use-cases significantly invested in physics modeling

– Target is very difficult because of the complex simulation requiring HPC

– Cryo system has many unknowns and not as much data as we like

• One use-case is entering operation in the field!

• We have setup collaboration tools and a data infrastructure to 
support data streaming and collection
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Extra
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Scrum was held at SNS for the week Dec. 17 – 21, 2018

• Goal was to find physical insight in target strain 
sensor data using Data Analytics

– Down select data, convert to ascii

– Analyze each sensor vs beam power

– Spatially identify on a target map sensor locations 
with nonlinear features.

– Propose possible linkages associated with physics.

Mostly Linear strain vs beam power

One week in same room = all walls written on

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
PCA Transformation

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
ICA Transformation

PCA and ICA transformations
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Better Control of Cryogenic Moderate System
• Problem to solve: beam trips have long system recovery 

time and cause excessive turbine speed fluctuation

• Solution:

– Improve overall system responses to the beam trips by better 
controller parameters and using meta-control methods

• Better whole system modeling by combination of mechanistic model 
and data-driven ML techniques

• ML-based control and/or meta-control methods

• Address inherent uncertainties by UQ techniques

• Off-line testing of the large system

Beam trip

excessive turbine 
fluctuation

long system
recovery time

H2 loops where trips registerturbine in the He loop
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Status
• Curating existing PV data from operation:

– Finished the python library to extract key PVs related to the specific 
beam trip windows

– Interactively interrogate and compare the system dynamics

• Building of the mechanistic CMS model

– Secured software license of CRYOLIB in EcoSimPro

– Model construction currently underway 

• System identification and ML-based modeling to better 
understand system dynamics

– To better understand the dynamic behavior of the systems from the 
PVs

• CMS-specific diagnostic run during October study time

– Requested study time to run CMS-specific diagnostics by placing CMS 
under different load conditions and excite “step responses”
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Decision Tree

Dataset K-NN

True Pos (var)

Decision Tree

True Pos (var)

A upstream 0.60 (0.04) 0.58 (0.02)

A downstream 0.52 (0.03) 0.55 (0.04)

B upstream 0.74 (0.04) 0.63 (0.06)

B downstream 0.69 (0.05) 0.53 (0.05)

C upstream 0.70 (0.03) 0.72 (0.03)

C downstream 0.54 (0.02) 0.65 (0.02)

D upstream 0.76 (0.03) 0.73 (0.01) 

D downstream 0.55 (0.02) 0.60 (0.01) 

Decision trees (DT) are a non-
parametric supervised learning 
method used for classification. 

Classification is performed by 
traversing a tree-like structure 
created in the learning process

Credit: Wikipedia

• Initial results of decision tree are not better

True Positives Results
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Errant Beam Analysis

• Subset of available data 2015 selected

• Initial non-ML techniques applied

– Hidden Markov Models, Electronics Network Frequency Criterion

• No promising results

• Initial ML Methods (supervised)

– K-Nearest Neighbors algorithm

– Decision Trees

– Naïve Bayes (no promising results) 

– Preprocessing:

• Principle Component Analysis

• Feature extraction to compose datasets

Data 
set

Samples # pulses Dates

A 25000 1540 2015-02-28, 2015-03-01, 2015-03-18, 
2015-03-28, 2015-03-29, 2015-03-30

B 100000 490 2015-05-05, 2015-05-28

C 25000 1400 2015-08-25

D 25000 2640 2015-10-25, 2015-10-26, 2015-10-27 
2015-10-28, 2015-10-29

Collaboration with Miha Reščič (PhD student with Rebecca Seviour)
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RF FPGA Design Flow

sklearn

model

Adrestea FPGA Design Environment

front-end

parser

intermediate

representation

header

config

host interface

vivado

testing

DSE

…

vitis

RTL

“cage”

LabVIEW

DCM FPGA

bitstream

Automated, push button
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Extreme Low-Latency FPGA Design

• Unique design features

– Deep optimization based on 
the tree structures

– Pre-compiled vote counter 
logic

– Streaming input data

• Benefits

– Area efficiency:
10X reduction

– Extremely low latency:
3X reduction of worst-case 
latency, early decision possible

T1 T2

vote

counter

early decision

features
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