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Modern view of the nucleus
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The Proton
in 1975

The Proton
in 2015

Proton in 
a nucleus

Fundamental questions:
• How does the proton get its mass?
• How does the proton get its spin?
• How do protons and neutrons form nuclei?



• Proton is composed of three “valence” quarks (two “up”, one “down” quark)

• Each of these three quarks has a mass of ~4.5 MeV/c

• But the proton has a mass of 938 MeV/c – almost two orders of magnitude more! 
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The Mass of the Proton

The Spin of the Proton
• Proton is composed of three “valence quarks”

• Each quark carries spin ½

• Proton carries spin ½ - two quarks with spin “up” and one with spin “down” would yield 

a net “up” spin of ½

• However, experiments in the 1980’s revealed that the three valence quarks only 

contribute a few percent of the proton spin!

What’s going on???



Let’s build a super-microscope – the EIC – and find out!

Requirements for an Electron-Ion Collider are defined in the 
White Paper:

• High luminosity: L = 1033  to 1034 cm-2sec-1 - factor 100 to 1000 beyond 
HERA

• Large range of center-of-mass energies Ecm= 29 to 140 GeV

• Polarized beams with flexible spin patterns

• Favorable condition for detector acceptance such as pT =200 MeV

• Large range of hadron species:  protons ….Uranium

• Collisions of electrons with polarized protons and light ions (h3He, hd,…)

EIC meets or exceeds the requirements formulated in the 

White Paper 
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Relativistic Heavy Ion Collider (RHIC) 
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• Two 
superconducting 
storage rings

• 3.8km circumference
• Energy up to 255GeV 

protons, or 
100GeV/n gold

• 110 bunches/beam
• Ion species from 

protons to uranium
• 60% proton polarization – world’s only polarized proton collider
• Exceeded design luminosity by factor 44 - unprecedented
• 6 interaction regions, 2 detectors
• In operation since 2001

EIC is based on existing RHIC facility



EIC Design Concept

• EIC is based on the RHIC complex: Hadron Storage Ring (HSR), injectors, 
ion sources, infrastructure; needs only relatively few modifications and 
upgrades

• Todays RHIC beam parameters are close to what is required for EIC (except 
number of bunches, 3 times higher beam current, and vertical emittance)

• Add a 5 to18 GeV electron storage ring & its injector complex to the RHIC 
facility   Ecm = 29-141 GeV

• Design and built a suitable interaction region

• EIC design aims to meet the goals formulated in the EIC WHITE PAPER, in 
particular the high luminosity of L = 1034cm-2s-1 and high polarization
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Facility layout
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Electron complex to be installed in existing RHIC tunnel – cost effective



Tunnel Cross Section
All accelerators fit into the existing tunnel
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Existing

RHIC

tunnel

ESR
RHIC RCS



Luminosity versus Center-of-Mass Energy
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Parameters for Highest Luminosity
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• Hadron beam parameters similar to present RHIC, but smaller vertical 
emittance and many more bunches

• 2 hour IBS growth time requires strong hadron cooling
• Electron beam parameters resemble a B-Factory
Parameters optimized for high luminosity at high energy
Alternative optimizations are possible, for example for high luminosity at low 
energy



Hadron Storage Ring Modifications

• EIC Hadron Storage Ring (HSR) to be composed of 
existing arcs of the two RHIC rings

• Insert sleeves coated with copper and amorphous 
carbon into superconducting magnet beam pipes to 
improve conductivity and reduce secondary electron 
yield (-> electron cloud) 

• Add strong hadron cooling to counteract intra-beam 
scattering
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Intra-beam Scattering (IBS)

• Individual particles in the beam are focused by the magnets

• As a result, individual particles are constantly moving within the 
bunch

• As particles pass each other, they scatter off each other

• This multiple scattering results in emittance growth – the denser 
the bunch, the faster the growth

• If not counteracted, emittance growth results in luminosity 
degradation

• Electron beams have synchrotron radiation damping to 
counteract (IBS), but hadron beams need cooling
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Hadron Beam Cooling
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• Conventional electron cooling

• Energy exchange between 
stored hadrons and an intense, 
“cold” (= low emittance) electron 
beam

• Transverse cooling times scale 
as γ5 - very challenging (but not 
impossible) above a few GeV



Hadron Beam Cooling

• Stochastic cooling
• Measure the 3D offsets of small subsets of the particles 

in a bunch, and correct them a short distance 
downstream

• Synchrotron motion in the rest of the ring leads to 
mixing of particles, such that each time these subsets 
consist of different particles with non-zero net offsets

• Cooling time proportional to (system 
bandwidth)/(number of particles per bunch). Few GHz 
bandwidth leads to ~30 minutes cooling time for 109

particles. Suitable for heavy ions in EIC, but not for 
protons due to factor 100 higher bunch population
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Hadron Beam Cooling

• Coherent electron cooling
• Essentially, an ultra-high bandwidth stochastic cooling system

• Instead of conventional pick-up, amplifier and kicker, and electron 
beam serves as pick-up and kicker

• Hadron beam distribution is imprinted on electron beam

• This imprinted signal is amplified, for example in a free-electron laser 
(FEL)

• Electron beam is then merged again with the hadron beam (with the 
correct phase) to serve as a kicker and “correct” the hadron beam 
distribution

• Bandwidth: tens of THz 
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Collision Synchronization

• HSR needs to operate over a wide energy range

• Changing the beam energy in the HSR causes a 
significant velocity change

• To keep the two beams in collision, they have to be 
synchronized so bunches arrive at the detector(s) at 
the same time

• Synchronization accomplished by path length 
change

• Between 100 and 275 GeV, this can be done by a 
small radial shift – there is enough room in the 
beampipe

• For lower energies, use an inner instead of an outer 
arc as a shortcut. 90 cm path length difference 
corresponds to 41 GeV beam energy
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Electron Storage Ring

• Electron Storage Ring (ESR) consists of six FODO-cell arcs, 
and six straight sections (IRs)

• Straight sections are used for:
• Detectors (IR6 and IR8)

• RF cavities (IR10)

• Injection and cross-over with HSR (IR12)

• Instrumentation (IR2)

• Cross-over with HSR (IR4)
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Emittance Control in the ESR

• EIC needs constant 24 nm emittance from 5 to 18 GeV, but 
equilibrium emittance in an electron storage ring depends on 
beam energy:

• Synchrotron radiation integrals:

• “curly H” function depends on Twiss parameters:

• Changing the beam optics changes the emittance
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• Remember:

• For a single FODO cell,

• Betatron phase advance μ per FODO cell is the “knob” to adjust the 
emittance 

• 60 degrees at 10 GeV and 90 degrees at 18 GeV both yield ~24 nm

• How about 5 GeV?
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Emittance at 5 GeV

• Again,

with

• Changing the bending radius changes the emittance – but how 
do we do that? 

20



Super-Bends
• Arc dipoles to be split into 3 segments:

• Above 10 GeV, all segments powered uniformly 

• At 5 GeV, short center dipole provides a reverse bend to reach desired 24 nm 
emittance

• In addition, the reverse bend also increases the radiation damping decrement, 
allowing for larger beam-beam parameter (see later slides)
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Vacuum 
chamber 
aperture



Emittance Fine-Tuning

• FODO cell phase advances of 60 degrees at 5 and 10 GeV, and 
90 degrees at 18 GeV result in almost the right emittance

• For good dynamic aperture, each sextupole needs a (nearby) 
partner 180 degrees away, such that nonlinear effects cancel

• This limits the choice of phase advances to values such as 45, 
60, 72, or 90 degrees

• Deviating from those phase advances would give the right 
emittance, but would be detrimental for dynamic aperture

What else can be used to fine-tune the emittance?

22



Damping Partition Numbers

• Once more,

with damping partition number  𝐽𝑥 horizontal 

• Sum of horizontal, vertical and longitudinal damping partition 
number is constant,

𝐽𝑥 + 𝐽𝑦 + 𝐽𝑧 = 4
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Manipulating Damping Partition Numbers

• Rewrite damping partition numbers as

𝐽𝑥 = 1 − 𝐷

𝐽𝑦 = 1

𝐽𝑧 = 2 + 𝐷

with
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Radial Shift
• In any lattice with separated-function magnets only (dipoles, 

quadrupoles, …), either

1/ρ = 0 (in quadrupoles)

or

𝑘𝑞𝑢𝑎𝑑 = 0 (in dipoles)

so                   

D = 0

However, a radial shift makes every quadrupole a combined-function 
magnet where 1/ρ ≠ 0 and 𝑘𝑞𝑢𝑎𝑑 ≠ 0

• As a result, 

D ≠ 0
𝐽𝑥≠ 1

and the resulting equilibrium emittance is modified
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EIC Electron Polarization

• Physics program requires bunches with spin “up” and spin “down” (in 
the arcs) to be stored simultaneously

• Sokolov-Ternov self-polarization would produce only polarization 
anti-parallel to the main dipole field 

• Only way to achieve required spin patterns is by injecting bunches 
with desired spin orientation at full collision energy

• Sokolov-Ternov will over time re-orient all spins to be anti-parallel to 
main dipole field

• Spin diffusion reduces equilibrium polarization

• Need frequent bunch replacement to overcome Sokolov-Ternov and 
spin diffusion
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High Average Electron Polarization

• Frequent  injection of bunches with high initial polarization of 85%
• Initial polarization decays towards P∞  < ~50%
• At 18 GeV, every bunch is replaced (on average) after 2.2 min with 

RCS cycling rate of 2Hz
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B P

Refilled every 1.2 minutes
B P

Refilled every  3.2 minutes

Pav=80%

Pav=80%

Re-injections

P∞= 30%
(conservative)

Re-injection



Rapid Cycling Synchrotron as Injector for 
ESR
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• Both the strong intrinsic and imperfection resonances that cause 
depolarization occur at spin tunes:

• Gϒ = nP +/- Qy
• Gϒ = nP +/- [Qy] (integer part of tune)

• To preserve polarization, these resonances need to be avoided
• To accelerate from 400 MeV to 18 GeV requires the spin tune ramping from

• 0.907 < Gϒ < 41.
• If we use a periodicity of P=96 and a tune Qy with an integer value of 50 

then our first two intrinsic resonances will occur outside of the range of our 
spin tunes 

• Gϒ1 = 50+νy (νy is the fractional part of the tune)
• Gϒ2 = 96 – (50+νy ) =46-νy

• Also our imperfection resonances will follow suit with the first major 
one occurring at Gϒ2 = 96 – 50 = 46 

• Spin tracking shows 98 percent polarization transmission with realistic 
magnet misalignments



Beam-beam Interaction

• Beam-beam force is highly non-linear:

• Particles in the core experience stronger focusing 
than particles in the transverse tails

• Amplitude-dependent focusing results in betatron
tune spread

• Resulting tune footprints need to be placed in-
between strong resonance lines
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• Synchrotron radiation damping allows for larger tune spread for electrons than for hadrons



Luminosity and Focusing
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Strong focusing by =5 cm

• Luminosity ~ 1/(spot size) 
• A smaller spot size at the IP means more luminosity 

• At the IP, (beam size)X(beam divergence)= const. in each plane (emittance)
• For a given beam (= fixed emittance), a smaller IP beam size means larger 

divergence
• A larger beam divergence leads to a larger 

beam size at the nearest focusing magnets –
(size at magnet)=(divergence)X(distance)

• Magnets need to have larger aperture while 
gradient (= focusing strength) remains the 
same – peak field at magnet poles is 
technically limited

Focusing elements for both beams need to be as close as possible to the IP



Crossing angle collisions

• Beam energies of electrons and hadrons are vastly different in EIC

• Focusing elements for electrons would have only little effect on 
hadrons, while hadron magnets would overfocus electrons

• Beams need to be separated into their respective focusing systems 
as close as possible to the IP

• A separator dipole would have to deflect the (“weaker”) electrons and 
would therefore generate a wide synchrotron radiation fan that would 
need to pass through the detector – requires large beam pipe 
diameter (HERA-II)

• Best solution: Crossing angle collisions!
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Crossing Angle and Luminosity
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• Long (~+/-6 cm), skinny (100 um) bunches colliding at an angle have very little 
overlap

• With 25 mrad crossing angle, each particle can only interact with a +/-4 mm thick 
slice of the +/-6 cm long oncoming bunch

• In head-on collisions, every beam particle in one beam can potentially 
interact with every particle in the other beam



Crab Crossing to the Rescue
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• Head-on collision geometry is 
restored by rotating the 
bunches before colliding (“crab 
crossing”)

• Bunch rotation (“crabbing”) is 
accomplished by transversely 
deflecting RF resonators
(“crab cavities”)

• Actual collision point moves 
laterally during bunch 
interaction



Nobody’s perfect
• Bunch rotation (crabbing) is not linear 

due to finite wavelength of RF 
resonators (crab cavities)

• Long hadron bunches are “S”-shaped 
during collision

• Distorted shape results in transverse 
offset between electron bunch and 
head and tail of proton bunch –
reduced luminosity and severe beam 
dynamics effects

• Longer bunches, skinnier bunches, or 
increased crossing angle all make this 
worse

• Higher harmonic crab cavities can 
“straighten out” the kick and therefore 
the bunch, but at a cost – space and 
money

• EIC already plans on 197 MHz crab 
cavities, plus 394 MHz harmonics

• 197 MHz as low as technically feasible 
(niobium sheets for cavity production, 
cavity size in tunnel)
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Spin Rotators

• Both electrons and protons will have longitudinal polarization at 
the IP

• Hadron spin rotators will be taken from present RHIC (helical 
dipoles)

• Electron spin rotators are based on solenoid magnets with 
subsequent dipole – large chunk of beamline with fixed 
geometry, challenging to fit into existing tunnel
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Zero Deg 
Calorimeter

Off momentum 
Detectors

Approximate ESR path

Spin 
Rotator

HSR Arc 

matching
matching

Snake

Nov 2021 layout

Crab –out
Spin

Rotator

Detector 
region

ESR Lumi-
Monitor

Crab–in

3 Dipoles and 3 
Quadrupoles in one 

shared cryostat

B0pF 
spectrometer 

h

HSR Arc 

HSR layout in IR6 
• Forward and rear hadron lattice matched into 

RHIC
• Snake at correct angle

• Beta = 1300m at crab cavities
• Hor. phase advance 90º

• Matching Magnets
• Mostly repurposed RHIC magnets

• few additional magnets required (some SC)

• Some need re-cryostating



ESR layout in IR6
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Crabbed beam.

IP Focusing

Detector 
region

Lumi-
Monitor

Crab –in 

Longitudinal 
spin

Spin Rotation 
Solenoids 

6GeV

18GeV

Crab–out 

Spin Rotation 
Solenoids

E-taggers

B2eR

e

B1eF

Design to:
• Provide room for detector components 
• Mitigate synchrotron radiation issues
• Provide longitudinal spin (new spin rotators)
• Match into the arcs
• Provide conditions for crabbing
• Allow 3 rings and beam elements  



Multi-stage separation:

• Electrons from protons

• Protons from neutrons

• Electrons from Bethe-Heitler photons (luminosity monitor)
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High luminosity:

• Small b* for high 

luminosity

• Limited IR chromaticity 

contributions

• Large final focus 

quadrupole aperture

Physics requirements:

• Large detector 

acceptance

• Forward spectrometer

• No machine elements 

within +/- 4.5m from 

the IP

• Space for luminosity 

detector, neutron 

detector, “Roman Pots”

EIC IR Layout



Summary

• The EIC will be the next large nuclear physics facility, starting 
operations ~2031

• It fulfills all the requirements listed in the White Paper, 
facilitating a rich physics program

• These requirements make it a very challenging machine – high 
beam currents, polarization, novel hadron cooling technique, 
large energy range, …

• A great opportunity to work on the forefront of accelerator 
science and technology!
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