#### 



## Plasma Processing for SRF cavities: Past, Present and Future

Poolo Porrutti ENAL

Paolo Berrutti, FNAL

FRIB, Michigan State University May 31<sup>st</sup> 2023

#### Outline

- Plasma cleaning for SRF cavities: in-situ cryomodule processing and its motivations
- First successful application: Ne-Oxygen plasma SNS experience
- Plasma ignition for LCLS-II cavities: dual tone excitation limitations
- Current applications: HOMs plasma ignition for LCLS-II from first cavity test to in-situ CM processing, CEBAF experience on C100 cavities and modules
- On going studies on coaxial resonators (single spoke at FNAL)
- Potential future developments



#### **Plasma Cleaning for SRF Cavities I**

- Oxygen plasma at room temperature (reactive environment with ions, e-, neutrals, radicals, etc.)
- Volatile by-products are formed through oxidation of hydrocarbons and pumped out and monitored (RGA)
- Mixture of Neon-Oxygen:  $p \sim 100 - 200 \text{ mTorr}, 2 \% O_2$ 
  - $Ne \rightarrow \underline{\text{transport gas}}$  to create a stable glow discharge (inert/noble)
  - $O_2 \rightarrow \underline{\text{cleaning agent}}$ , react with carbon forming volatile species

$$O_2 + C_x H_y \rightarrow CO + CO_2 + H_2 O$$

M. Doleans et al. NIMA 812 (2016) 50-59



#### **Plasma Cleaning for SRF Cavities II**

Plasma process at ORNL/SNS focused on:

- Reducing FE by increasing work function of cavity RF surface
  - Hydrocarbon contaminants observed on all Nb cavities
  - Hydrocarbons and adsorbates lower work function of Nb
- Enabling operation at higher accelerating gradients

$$j = \beta \frac{AE^2}{\Phi} e^{-B \frac{\Phi^{3/2}}{\beta E}}$$
$$dj = 0 \quad \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\Phi}{\Phi}$$

J: current density E: surface electric field  $\Phi$ : work function  $\beta$ : enhancement factor (10s to 100s) A,B: constant

Increasing  $\Phi$  by 10 % means increasing E<sub>acc</sub> of about 15 %



### Motivations for in-situ plasma cleaning for LCLS-II

| Cavity        | Cryomodule<br>Max Gradient*<br>[MV/m] | VTS Max<br>Gradient<br>[MV/m] | Usable Gradient**<br>[MV/m] | FE onset<br>[MV/m] | Cryomodule<br>Q₀ @16MV/m***<br>Fast Cool Down | Q₀ @16MV/m<br>at VTS |
|---------------|---------------------------------------|-------------------------------|-----------------------------|--------------------|-----------------------------------------------|----------------------|
| TB9AES021     | 21.2                                  | 23.0                          | 18.2                        | 14.6               | 2.6e10                                        | 3.1e10               |
| TB9AES019     | 19.0                                  | 19.5                          | 18.8                        | 15.6               | 3.1e10                                        | 2.8e10               |
| TB9AES026     | 19.8                                  | 21.5                          | 19.8                        | 19.8               | 3.6e10                                        | 2.6e10               |
| TB9AES024     | 21.0                                  | 22.4                          | 20.5                        | 21.0               | 3.1e10                                        | 3.0e10               |
| TB9AES028     | 14.9                                  | 28.4                          | 14.2                        | 13.9               | 2.6e10                                        | 2.6e10               |
| TB9AES016     | 17.1                                  | 18.0                          | 16.9                        | 14.5               | 3.3e10                                        | 2.8e10               |
| TB9AES022     | 20.0                                  | 21.2                          | 19.4                        | 12.7               | 3.3e10                                        | 2.8e10               |
| TB9AES027     | 20.0                                  | 22.5                          | 17.5                        | 20.0               | 2.3e10                                        | 2.8e10               |
| Average       | 19.1                                  |                               | 18.2                        | 16.5               | 3.0e10                                        | 2.8e10               |
| Total Voltage | 154.6 MV                              |                               | 148.1 MV                    | acontonac          |                                               |                      |

\* Administrative limit 20 MV/m

\*\* Radiation <50 mR/h

\*\*\* TB9AES028 Q<sub>0</sub> was at 14 MV/m

In-situ plasma processing of cryomodules will allow:

- Increasing maximum gradient
- <u>Reducing radiation level</u>
- Preserving high-Q

Courtesy of G. Wu

🛠 Fermilab

In-Situ:

NO NEED OF

**DISASSEMBLY!!** 

5 P. Berrutti | Plasma Cleaning for SRF cavities

#### **Example of Set-up for Plasma Cleaning on SRF cavity**



Ne plasma



• Ar plasma



6 P. Berrutti | Plasma Cleaning for SRF cavities

### **Plasma Processing at ORNL/SNS I**

- First studies started around a decade ago in 2013, reported at SRF 2013 by M. Doleans
- Cleaning technique uses a neon gas discharge with reactive oxygen for SRF cavities (805 MHz) at room temperature
- Plasma ignited in each cell of a cavity sequentially
- Oxidation of hydrocarbon surface contaminants creates volatile by products pumped out continuously
- Cleaned surface has increased work
  function helping mitigating field emission
  and multipacting



M. Doleans et al., NIMA **812** (2016) M. Doleans J. Appl. Phys., **120**, 243301 (2016) P.V. Tyagi et al., Applied Surface Science **369** (2016)







## **Plasma Processing at ORNL/SNS II**

- 10 cryomodules plasma processed at SNS either in offline facilities or directly in the linac tunnel:
  - 8 High beta CMs
  - 2 Medium beta CMs
- Cleaning of the cavity surfaces revealed by the significant reduction of by products partial pressures over time
- 38 cavities plasma processed at SNS with an average Gradient increase of 2.4 MV/m





🚰 Fermilab







#### **Collaboration for LCLS-II Plasma Processing**



Project supported by DOE - Basic Energy Sciences (BES)



🛠 Fermilab

9

P. Berrutti

•

#### Plasma Ignition in LCLS-II Cavities with TM<sub>010</sub> modes

- Plasma ignited sequentially cell-by-cell
- Dual tone excitation to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
  - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
  - Off-resonance excitation introduce asymmetry in the cell amplitude



#### LCLS-II 9-cells - 1<sup>st</sup> pass-band modes

#### Plasma Ignition in LCLS-II Cavities with TM<sub>010</sub> modes

- Plasma ignited sequentially cell-by-cell
- Dual tone excitation to ignite plasma in the desired cell (M. Doleans, J. Appl. Phys. 120, 243301 (2016))
  - <u>2 fundamental modes mixed</u> to increase field amplitude in one cell (and its mirror images)
  - <u>Off-resonance excitation</u> introduce asymmetry in the cell amplitude
- To obtain 10 kV/m, more power is needed comparing with SNS cavities:
- 9-cells instead of 6
- Larger mismatch at room T:
  - $Q_0 = 1 \cdot 10^4$  for Nb
  - SNS FPC:  $Q_{ext} = 7 \cdot 10^5$
  - LCLS-II FPC:  $Q_{ext} = 3 \cdot 10^7$
  - For LCLS-II only 1% of the power is transmitted to the cavity

| Cell<br># | Mode<br>1 | Amp  | dF<br>(HBW) | Mode<br>2 | Amp  | dF<br>(HBW) | Pf<br>FPC<br>(W) |
|-----------|-----------|------|-------------|-----------|------|-------------|------------------|
| 1         | 8/9 pi    | 0.67 | 0           | рі        | 0.33 | 1.5         | 160              |
| 2         | 8/9 pi    | 0.75 | -1.5        | 3/9 pi    | 0.25 | 0           | 200              |
| 3         | 5/9 pi    | 0.75 | 0           | 8/9 pi    | 0.25 | -1.5        | 130              |
| 4         | 7/9 pi    | 0.58 | 1.5         | 4/9 pi    | 0.42 | 1.5         | 280              |
| 5         | 7/9 pi    | 0.75 | 0           | 5/9 pi    | 0.25 | 0           | 80               |
| 6         | 7/9 pi    | 0.5  | -1.5        | 4/9 pi    | 0.5  | -1.5        | 310              |
| 7         | 5/9 pi    | 0.75 | 0           | 8/9 pi    | 0.25 | 1.5         | 130              |
| 8         | 8/9 pi    | 0.71 | 1.5         | 3/9 pi    | 0.29 | 0           | 200              |
| 9         | 8/9 pi    | 0.67 | -1.5        | рі        | 0.33 | -1.5        | 160              |
|           |           |      |             |           | ノモ   | Form        | hilah            |

#### Field Enhancement at the LCLS-II FPC

 Field enhancement at the coupler due to larger mismatch at room T and different FPC geometry



• Suggest larger probability to ignite the plasma at the coupler

$$\beta = \frac{Q_0}{Q_{ext}} \approx 0.003 \rightarrow |\Gamma|^2 \approx 0.99$$

🚰 Fermilab



#### New Idea: Plasma Ignition Using HOMs

- 1<sup>st</sup> pass-band modes capable of building electric field in each cell.
- Poor coupling at room temperature represents a limitation.
- Is there an efficient way of coupling power to the cavity at room temperature?

HOM couplers are designed to extract power at HOMs frequencies: Good coupling also at room temperature!



For the first monopole pass-band:

$$\beta = \frac{Q_0}{Q_{ext}} \approx 0.003 \rightarrow |\Gamma|^2 \approx 0.99$$

For the first two HOM pass-bands:

 $0.01 < \beta < 1.17 \rightarrow 0.006 < |\Gamma|^2 < 0.94$ 



#### **Plasma Ignition with HOMs superposition I**

#### Solution to avoid ignition of the FPC:

 $\rightarrow$  Use mixture of HOMs instead of the FPB modes to ignite plasma

- For the **first pass-band** <u>only 1% of the power transmitted to the cavity</u>
- Most dipoles of 1<sup>st</sup> and 2<sup>nd</sup> passband almost <u>all power gets to the cavity</u> (very good coupling at room T)
- Plasma will be still ignited sequentially cell-by-cell using HOMS

|                                                      | CELL #          |       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|------------------------------------------------------|-----------------|-------|------|------|------|------|------|------|------|------|------|
| g                                                    | plasma<br>model | MODE# | 2-4  | 2-6  | 2-2  | 2-5  | 2-1  | 2-5  | 2-2  | 2-6  | 2-4  |
| n n                                                  |                 | AMP   | 0.51 | 0.89 | 0.94 | 0.4  | 1    | 0.9  | 0.84 | 0.76 | 0.5  |
| pla                                                  |                 | MODE# | 1-6  | 1-4  | 1-3  | 1-4  | -    | 1-3  | 1-4  | 1-9  | 1-4  |
|                                                      | AMP             | 0.49  | 0.11 | 0.06 | 0.6  | -    | 0.1  | 0.16 | 0.24 | 0.5  |      |
| HO<br>H                                              | Pf 1            | TOT W | 4.71 | 8.97 | 6.35 | 5.89 | 2.97 | 7.78 | 6.02 | 7.23 | 7.28 |
| P. Berrutti, et al., al., J. Appl. Phys. 126, 023302 |                 |       |      |      |      |      |      |      |      |      |      |



#### **Plasma Ignition with HOMs superposition I**

#### Solution to avoid ignition of the FPC:

- $\rightarrow$  Use mixture of HOMs instead of the FPB modes to ignite plasma
- For the **first pass-band** <u>only 1% of the power transmitted to the cavity</u>
- Most dipoles of 1<sup>st</sup> and 2<sup>nd</sup> passband almost <u>all power gets to the cavity</u> (very good coupling at room T)
- Plasma will be still ignited sequentially cell-by-cell using HOMS

|       | CELL #      |       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
|-------|-------------|-------|------|------|------|------|------|------|------|------|------|
| ឲ     |             | MODE# | 2-4  | 2-6  | 2-2  | 2-5  | 2-1  | 2-5  | 2-2  | 2-6  | 2-4  |
| u u   |             | AMP   | 0.51 | 0.89 | 0.94 | 0.4  | 1    | 0.9  | 0.84 | 0.76 | 0.5  |
| pla   | MODE2       | MODE# | 1-6  | 1-4  | 1-3  | 1-4  | -    | 1-3  | 1-4  | 1-9  | 1-4  |
| Ms    |             | AMP   | 0.49 | 0.11 | 0.06 | 0.6  | -    | 0.1  | 0.16 | 0.24 | 0.5  |
| HOH I | <u>Pf</u> T | OT W  | 4.71 | 8.97 | 6.35 | 5.89 | 2.97 | 7.78 | 6.02 | 7.23 | 7.28 |

P. Berrutti, et al., al., J. Appl. Phys. 126, 023302



#### Plasma Ignition with HOMs superposition (example)



5<sup>th</sup> of 2<sup>nd</sup> dipole pass band (2-5)



3<sup>th</sup> of 1<sup>st</sup> dipole pass band (1-3)



#### Plasma Ignition with HOMs superposition (example)



#### Maximize field in cells #4 and #6



3<sup>th</sup> of 1<sup>st</sup> dipole pass band (1-3) Creates the asymmetry needed to maximize the field only in one of the

cell (in this case cell #6)



#### Plasma Ignition with HOMs superposition (example)





5<sup>th</sup> of 2<sup>nd</sup> dipole pass band (2-5) = 3<sup>th</sup> of 1<sup>st</sup> dipole pass band (1-3)

Field amplitude maximized in cell #6





#### Mode selection to improve plasma homogeneity

#### Ignition in cell # 6



5<sup>th</sup> of 2<sup>nd</sup> DPB

#### 3<sup>rd</sup> of 1<sup>st</sup> DPB









#### Mode selection to improve plasma homogeneity

#### Ignition in cell # 6





After ignition, it is possible to pick a mode with uniform field distribution in the ignited cell and use it for plasma tuning. For example in cell #6: shut off 1-3, add 1-6 and shut off 2-5.









#### **HOMs superposition drawbacks and Plasma Bridging**

- HOMs are not tuned like the first monopole passband → frequency and field distribution may vary from cavity to cavity → relying on local asymmetries is not ideal
- Some HOMs have a very uneven electric field distribution → need to select a mode with uniform field distribution after ignition
- Alternative idea: ignite always cell #5 and transfer the plasma from cell to cell, not relying on localized maximum for cell ignition.











#### **Plasma bridging I: ignition**



#### Plasma bridging II: plasma transfer #5 to #6 (example)

- 1. Cell #5 is ignited with mode 2-1
- 2. Mode 1-3 is added to create unbalance between cell #4 and cell #6 but the E field is still maximum in cell #5
- 3. Mode 2-1 can now be switched off and the plasma remains ignited in cell #5
- 4. Add **mode 1-6** to 1-3: E field is maximum in cell #6, the plasma moves from 5 to 6
- 5. Switch off mode 1-3, plasma remains ignited in cell #6.

Mode 1-3 Mode 1-6 P. Berrutti, et al., al., J. Appl. Phys. 126, 023302

Mode 2-1

Fermilab



#### **Set-up Plasma Ignition Studies for LCLS-II**

**RF** rack





#### **Set-up Plasma Ignition Studies for LCLS-II**



- Cleaning is performed at room temperature with 75-200 mTorr of Ne-O<sub>2</sub>
- Cavities are assembled with valves on both end sides, for injection and evacuation of the gas
- Neon and Oxygen are sent to the cavity mixed (few % of O<sub>2</sub>)
- RGA is used to analyze by-products



#### **Ne and Ar ignition curves**

- Plasma ignition as a function of pressure monitored for both Neon and Argon
- Verified that the risk of igniting the plasma at the HOM coupler is negligible



#### **Plasma ignition comparison with Dual Tone excitation**

• Total forward RF power needed for HOMs plasma ignition (LCLS-II) is compared with SNS pi-mode power



🛟 Fermilab

#### **Selective Plasma ignition in 9-cell cavities**



#### **Plasma tuning using HOMs I**



To tune the intensity can be varied:

- P<sub>FWD</sub>
- $\omega_{RF}$ sent to the cavity  $\Delta f_{max} \approx 15-20$ MHz





#### **Plasma tuning using HOMs II**

Plasma density  $n_e$  is related to  $\delta \omega$  of the cavity modes, through the plasma frequency and Slater's theorem:

$$\frac{\delta\omega}{\omega} \approx \frac{1}{2} \frac{\iiint_{plasma} \eta E^2 dV}{\iiint_{cavity} E^2 dV}, \qquad \eta = \frac{\omega_{pl}^2}{\omega_{RF}^2} = 1 - \varepsilon$$

$$\omega_{pl} = \sqrt{\frac{n_e \, e^2}{\varepsilon_0 \, m}} \quad \Longrightarrow \quad n_e \approx \frac{\delta \omega}{\omega} \frac{2\varepsilon_0 \, m \omega_{rf}^2}{e^2} \frac{\int_{cavity} E^2 dV}{\int_{plasma} E^2 dV}$$



#### Plasma detection via RF measurements I

Method to locate the cell where plasma is ignited without use of cameras:

- 1. The frequency shift  $\delta \omega$  of the first dipole pass-band due to plasma ignition is measured
  - $\delta \omega$  depends on:
  - Change in dielectric constant due to plasma ( $\epsilon \propto \eta$ )
  - Intensity of the electric field of the mode in the cell of ignition

$$\frac{\delta\omega}{\omega} \approx \frac{1}{2} \frac{\iiint_{plasma} \eta E^2 dV}{\iiint_{cavity} E^2 dV}, \qquad \eta = \frac{\omega_{plasma}^2}{\omega_{RF}^2}$$

2. Measured  $\delta \omega$  is compared with  $\delta \omega$  calculated simulating the glow discharge in each cell of the cavity

🛠 Fermilab

#### **Plasma detection via RF measurements II**

Developed a Labview program that measures  $\delta\omega$  and compares it to simulated  $\delta \omega$  and identifies cell of ignition 1600.0 Adress find Fmeas Init. Meas. Save Load Stop - 17 Fmax 1750.0 to F0 FO set 2 4.00 XY Graph dF1 0.7 Cell#2 dF2 1.000 1 2 0.6 3 0.5 5 Commentary MEAS-SET 1-2 No plasma; 0.4 3-4 plasma cell 1 - mode 1-5 8 5-6 plasma cell 2 mode 1-7 **CELL** plasma dH, MHz 9 0.3 Data set 2 1 4486.990 1699.419 4180.361 1727.752 0.2 10 4331.176 1699.788 3897.468 1728.016 0.1 0.0 -0.1-5.0 5.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 6.0



#### Plasma processing studies in artificially contaminated cavity

- 1<sup>st</sup> test goal: remove hydrocarbon contamination with plasma cleaning
- 8 "dots" were drawn with both red and black permanent markers around the iris of the first cell of a 9-cell LCLS-II cavity EDS analysis of black Sharpie ink





#### Contaminated cell (#1) has been processed for ≈ 19 hours total





Initial state

After 5h of plasma cleaning

After 19h of plasma cleaning



# N-doped single cell: RF results before and after plasma processing

<u>Scope</u>: study effect of plasma processing on Q-factors on N-doped cavities

N-doped cavity processed for 16h with Ne-O<sub>2</sub> plasma.



# Simulated vacuum failure: RF results before and after plasma processing

Scope: study the removal of natural contamination

9-cell cavity: each cell processed for 1h 40min with Ne-O<sub>2</sub> plasma. 1E11 Q<sub>o</sub> - After Plasma 8E10 - After 2<sup>nd</sup> Plasma 100 нĦ RF test showed that Rad Top - Contaminated - Before Plasma Rad Bot - Contaminated - Before Plasma 6E10 Rad Top - After Plasma the **plasma** Rad Bot - After Plasma Rad Top - After 2<sup>nd</sup> Plasma ₽®® Rad Bot - After 2<sup>nd</sup> Plasma 10 Radiation [mR/hr] removed the 4E10 radiation associated with field emission 2F10 0.1 -PC  $Q_0$  lowering due to trapped flux during 0.01 cool down 22 24 18 20 0 2 12 16 8 14 E<sub>acc</sub> [Mv/m]

🚰 Fermilab

#### **Controlled introduction of carbon contamination**

 Small drop of Aquadag (carbon-based conductive paint) introduced using a clean Nb wire at the iris of a single-cell cavity



Chosen concentration





# Carbon contamination: RF results before and after plasma processing

Scope: study the removal of Carbon contamination

• Single cell cavity processed for 17h with Ne-O<sub>2</sub> plasma.

RF test showed that the plasma removed the contamination of restoring the initial accelerating field



#### **LCLS-II-HE verification Cryomodule**

- Verification CM for LCLS-II-HE: assembled and tested at Fermilab
- Gradient and Q<sub>0</sub> in all 8 cavities exceeds the ambitious LCLS-II-HE specification
- No field emission observed at any gradient in any cavities after processing

### World record cryomodule!



|                                  | E <sub>acc</sub> Spec | E <sub>acc</sub> avg | Q <sub>0</sub> Spec  | Q <sub>0</sub> avg   |
|----------------------------------|-----------------------|----------------------|----------------------|----------------------|
| HE vCM (8<br>cavities)           | 21 MV/m               | 25 MV/m              | 2.7x10 <sup>10</sup> | 3.0x10 <sup>10</sup> |
| LCLS-II prod'n<br>(280 cavities) | 16 MV/m               | 19 MV/m              | 2.7x10 <sup>10</sup> | 2.9x10 <sup>10</sup> |

S. Posen et al., Phys. Rev. Accel. Beams 25, 042001



#### Experimental systems: gas injection, vacuum & RF





Connections between vacuum/gas systems and vCM: conducted in cleanroom to minimize risk of particle contamination





#### Plasma processing applied to LCLS-II HE vCM I



## Each morning the gas flow was established through the vCM

#### CAV1: 1<sup>st</sup> day of plasma processing



- Increase in CO,CO<sub>2</sub>, C signals is observed along with decrease in O<sub>2</sub> signal
- Almost no by-products measured by RGA during 2<sup>nd</sup> day of plasma processing.



Example of experimental data collected during plasma processing of CAV4. This includes a rare case of plasma ignition at the HOM coupler





Example of experimental data collected during plasma processing of CAV4. This includes a rare case of plasma ignition at the HOM coupler



Temperature increase on:

- HOM1 cable < 2K</li>
- HOM2 cable < 0.5K</li>

During coupler ignition: 1.4K increase on HOM1 cable



Temperature increase on:

- Cell # 1 < 1.2K
- Cell # 9 < 1.6K
- During coupler ignition: 0.3K



#### vCM performance before and after plasma processing I

|          |               | Before P         | lasma Processing                   |             |               | After Pl         | asma Processing             |             |
|----------|---------------|------------------|------------------------------------|-------------|---------------|------------------|-----------------------------|-------------|
| Cavity   | $Max E_{acc}$ | Usable $E_{acc}$ | $Q_0 \text{ at } 21 \mathrm{MV/m}$ | MP quenches | $Max E_{acc}$ | Usable $E_{acc}$ | $Q_0$ at $21 \mathrm{MV/m}$ | MP quenches |
|          | (MV/m)        | (MV/m)           | $\times 10^{10}$                   |             | (MV/m)        | (MV/m)           | $\times 10^{10}$            |             |
| 1        | <b>23.4</b>   | 22.9             | 3.0                                | Yes         | <b>23.8</b>   | 23.3             | 3.4                         | No          |
| 2        | 24.8          | 24.3             | 3.0                                | Yes         | 25.2          | 24.7             | 3.2                         | Yes         |
| 3        | 25.4          | 24.9             | 2.6                                | Yes         | 26.0          | 26.0             | 3.4                         | Yes         |
| 4        | 26.0          | 26.0             | 3.2                                | Yes         | 26.0          | 26.0             | 3.2                         | No          |
| <b>5</b> | 25.3          | 24.8             | <b>2.9</b>                         | Yes         | <b>25.5</b>   | 25.0             | <b>2.8</b>                  | No          |
| 6        | 26.0          | 25.5             | 3.4                                | Yes         | 26.0          | 26.0             | 3.2                         | Yes         |
| 7        | 25.7          | 25.2             | 3.4                                | Yes         | 25.9          | 25.4             | 3.3                         | Yes         |
| 8        | <b>24.4</b>   | 23.9             | 2.7                                | Yes         | 24.7          | 24.2             | <b>2.6</b>                  | No          |
| Average  | 25.1          | 24.7             | 3.0                                |             | 25.3          | 25.1             | 3.1                         |             |
| Total    | 209           | 205              |                                    |             | 210           | 208              |                             |             |

RF test after plasma processing demonstrated that:

- vCM performance are preserved
- Plasma processing did not introduce any contamination: vCM still FE-free



#### vCM performance before and after plasma processing II







Plasma processing can eliminate multipacting: the 4 plasma processed cavities do no exhibit

any MP quench, contrary to the other 4 cavities We could address both FE and MP in situ at the same time

| Cavity   | Multipacting Quenches |                          |                         |  |  |  |  |
|----------|-----------------------|--------------------------|-------------------------|--|--|--|--|
|          | Before plas           | na Processing            | After Plasma Processing |  |  |  |  |
|          | $1^{\rm st}$ cooldown | 2 <sup>nd</sup> cooldown |                         |  |  |  |  |
| 1        | /                     | 157                      | 0                       |  |  |  |  |
| 2        | 135                   | 106                      | 205                     |  |  |  |  |
| 3        | 41                    | 44                       | 53                      |  |  |  |  |
| 4        | 68                    | 3                        | 0                       |  |  |  |  |
| <b>5</b> | 10                    | 16                       | 0                       |  |  |  |  |
| 6        | 46                    | 7                        | 69                      |  |  |  |  |
| 7        | 68                    | 33                       | 82                      |  |  |  |  |
| 8        | <b>128</b>            | 108                      | 0                       |  |  |  |  |

B. Giaccone, et al. arXiv:2201.09776 (2022)



#### HOMs plasma ignition at JLAB for CEBAF I

- JLAB has adapted the HOMS plasma ignition for C100 cavities for in situ plasma processing to help mitigate CEBAF linac energy degradation for just over 2 years.
- They built up to 5 channels of RF systems, 2 gas supply systems and 2 pumping systems.
- Initial effort focuses on C100 cryomodules with follow on effort towards processing the other cryomodule types used in CEBAF.
- Their "standard" technique for C100 cavities is to process 2 cells at the same time by applying
- They have processed a cavity several times in the vertical staging area and a C100 cryomodule in the cryomodule test facility.





#### HOMs plasma ignition at JLAB for CEBAF II

- Processing done in the vertical staging area with the cavity is mounted on a vertical test stand in order to reduce cleanroom labor and improve throughput.
- Argon with 1% to 3% oxygen at a pressure between 80 mTorr and 250 mTorr
- Exhaust gas monitored using an RGA, RF power and frequencies are monitored and plasma is detected with RF similarly to LCLS-II
- Recent tests conducted with He to ignite the plasma and Oxygen as a reactive gas



#### HOMs plasma ignition for coaxial resonators SSR

- Coaxial resonators may benefit from plasma cleaning (MP processing, FE), usually Q<sub>0</sub> at RT is ≈5E3: lower than multi-cell structure → couplercavity mismatch very high at RT.
- HOMs can couple to FPC better than fundamental mode at RT!
- Drawback: HOMs in spoke cavities have complicated field distribution...



#### Plasma ignition SSR1 spoke cavity at FNAL I

- Ar at 250-20 mTorr requires RF power ranging from ≈0.3W to ≈50W to ignite glow discharge depending on pressure and frequency.
- Correct mix of modes to ignite areas of interest:
  - accelerating gaps
  - spoke base
  - spoke side
  - cylindrical shell



> SSR1 Cryomodule FPC





#### Plasma ignition SSR1 spoke cavity at FNAL II

- Ar pressure can be lowered as much as 20 mTorr without affecting easiness of plasma ignition.
- Less than 6W of forward RF power are enough to ignite the whole SSR1 cavity at 40 mTorr
- Higher frequency is usually related with higher plasma ignition power.



#### Ar ignition power





#### **Future applications of Plasma Cleaning in SRF**

- HOMs plasma ignition can be potentially applied to any cavity geometry, it has been proven successful for LCLS-II, CEBAF and for single spoke resonators
- Unusual cavity designs will be able to benefit from plasma cleaning using HOMs or other ignition techniques
- The Ne-Oxygen plasma recipe is being tweaked and perfected: Ar-Oxygen and He-Oxygen are being used in the community already
- Different plasma recipes could be investigated to include etching, deposition or surface properties changes for the RF surface of the SRF cavities
- Future plasma application for SRF cavities could merge with material science technologies for other industries like semiconductors and their material preparation...



#### **Future applications of Plasma Cleaning in SRF**

- HOMs plasma ignition can be potentially applied to any cavity geometry, it has been proven successful for LCLS-II, CEBAF and for single spoke resonators
- Unusual cavity designs will be able to benefit from plasma cleaning using HOMs or other ignition techniques
- The Ne-Oxygen plasma recipe is being tweaked and perfected: Ar-Oxygen and

# Thank you for your attention!



Urcparat