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OUTLINE

▪ Introduction to SWFA (structure wakefield accelerator)

▪ Discovery of BIAR (breakdown insensitive accelerator regime)

▪ Evidence from another high gradient accelerator test

▪ Short pulse benefit to dielectric accelerators

▪ The first application: a photogun reaching 400MV/m of gradient on cathode

▪ Summary
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INTRODUCTION TO SWFA (STRUCTURE 

WAKEFIELD ACCELERATOR)
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SWFA
R&D

Beam 
Beam 
Beam

Structure
Structure
Structure

Microwave THz

STRUCTURE WAKEFIELD ACCELERATORS

CWA TBA

shaped and intense

The same channel 

or multi-channels
Two independent 

structures

➢ Structures → undependable of e- and e+

➢ Empirical scaling law indicates shorter pulse → higher gradient

➢ Wakefield→ shorter pulses

Why 

SWFA

➢ Achieve desirable luminosity (scalable energy, beam power, lower vertical 

emittance, shorter bunch length, etc)

➢ How to achieve higher efficiency to reduce the site power
Challenges

Eap
1/6 =Const.
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SCALABLE TBA ACCELERATION MODULE

• Fast kicker and RF delay for drive beam distribution



SWFA TBA PROGRESS OVER YEARS

Power Extraction Acceleration Gradient
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TBA R&D

Staging

Drive beam 

power source

Main beam 

acceleration

- Simplified staging demonstrated

- 2 stages, 1 pair of structures per

  stage

- Main beam energy gain of 5 MeV

- TBA beamline optimization 

- X-band metallic: 300 MW

- K-band dielectric: 55 MW 
- X-band metallic: 150 MV/m

- K-band dielectric: 28 MV/m 

C. Jing, et al, NIMA 898, 72-76 (2018), J. Shao, et al, in Proceedings of IPAC2017

N. Neveu, et al, PRAB 22, 054602 (2019)



ARGONNE FLEXIBLE LINEAR COLLIDER

3TeV 30MW beam power TBA
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❑ Based on scientifically mature and low cost  Dielectric TBA technologies
• Short rf pulse (20ns) for high gradient (e+ e- 200MeV/m of effective gradient)
• Modular design →easily staged
• Wall plug efficiency (~15%)

18km 

7.5km linac 7.5km linac



DISCOVERY OF BIAR (BREAKDOWN INSENSITIVE 

ACCELERATION REGIME) 
EXPERIMENT 1: X-BAND SINGLE CELL TRAVELLING WAVE ACCELERATING 

STRUCTURE

(THANK JIAHANG SHAO FOR SHARING THE SLIDES)



X-BAND SINGLE-CELL TRAVELLING-WAVE STRUCTURE

Single-cell structure

- Optimized for maximum transient gradient

Normal cell properties (11.7 GHz)

Iris diameter 6.1 mm

Iris thickness 2.9 mm

Phase advance 120 degree

Quality factor 6070

Shunt impedance r/Q 1.4x104 Ω/m

Group velocity 0.0114c

80%92% 93%100%

- The input matching cell has higher gradient and surface 

field than the normal cell
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SHORT-PULSE HIGH-POWER TEST AT AWA

Main pulse

Secondary pulse

Input

pulse

RF conditioningExperimental setup

Main pulse

Secondary pulse

Normal transmitted pulse

- 7.7x104 pulses accumulated at 2 Hz repetition 

Conditioning Testing
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SHORT-PULSE HIGH-POWER TEST AT AWA

BD type I BD type II

- Distorted main pulse

- Disappeared after conditioning

- Likely to be caused by multipacting

Main pulse

Secondary pulse

H. Xu et al., PRAB 22, 021002 (2019)

- Blocked secondary pulse and normal main pulse

- Probability decreases after conditioning

- Likely to be caused by RF breakdown

Main pulse

Secondary pulse
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LONG-PULSE HIGH-POWER TEST AT TSINGHUA

RF conditioningExperimental setup

- 2.3x107 pulses accumulated at 40 Hz repetition - Driven by klystron with pulse compressor

Y. Jiang et al., IEEE Trans. Microw. Theory Tech., 69, 1586-1593, (2021)

Courtesy of Hao Zha
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RESULTS DISCUSSION (I)

Comparison of short and long pulse results

(
54 𝑛𝑠

6 𝑛𝑠
)1/6

- Accelerating gradient of the normal cell and 

the input matching cell reaches 270 MV/m and 

310 MV/m

- Surface field of the input matching cell 

reaches 500 MV/m

- Gradient improved at least twofold using short 

pulse (limited conditioning period, only 

secondary pulse taken into consideration)

- BDR vs. pulse length doesn’t follow the 

empirical scaling law in short-pulse regime

- New physics of RF breakdown in short-pulse 

regime

14

Eap
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Breakdown Insensitive Acceleration Regime (BIAR)

RF causes BD and plasma generation

RF pulse

0 ns

Plasma expansion to block RF transmission
after ~10 ns

ANL: ϕ10-20 μm Tsinghua: ϕ30-100 μm

- Transmitted RF pulse and accelerated beam not 

influenced by RF breakdown

- Reduced structure damage due to limited energy 

available for breakdown avalanche

RESULTS DISCUSSION (II)

15



EVIDENCE FROM THE MOST RECENT HIGH 

GRADIENT ACCELERATOR TEST
EXPERIMENT 2: X-BAND METAMATERIAL  ACCELERATING 

STRUCTURE

(THANK XUEYING LIU FOR PROVIDING THE SLIDES)



METAMATERIAL ACCELERATOR DESIGN

▪ Efficient structure design to explore 

gradient limitation
– Optimized for high transient gradient 

with a 6 ns FWHM input pulse

– Metamaterial structure with a negative 

group velocity has a higher shunt 

impedance than structures with the 

same but positive group velocities
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Unit Cell

Beam aperture:

   4 mm (diameter)

Plate thickness:

   1 mm

Full Structure
200 MV/m peak 

gradient from

115 MW input 

RF power

6 ns FWHM 

pulse extracted 

from drive beam



BREAKDOWN TEST STAND
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Faraday 

cup

Vacuum 

pump

Light 

diagnostics

Directional 

coupler for RF-out

RF load

Waveguide for 

RF-in

Test chamber

Power 

extractor

Inside view

▪ Vacuum chamber built with 

breakdown diagnostics

– Dark electrons (Faraday 

cup)

– Light (photodiode and 

camera)

Drive 

beam



REPRESENTATIVE PULSE

▪ Measured RF traces agree very well with calculations

Primary pulse Secondary pulse
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BIAR BREAKDOWN VS. DISRUPTIVE TIVE BREAKDOWN

Normal

Primary pulse present

Secondary pulse present

Faraday cup signal: Low

BIAR breakdown

Primary pulse not interrupted

Secondary pulse not present

Faraday cup signal: Mid

Disruptive breakdown

Primary pulse interrupted

Secondary pulse not present

Faraday cup signal: High

No visible light detected in all three cases- possibly a new feature for short-pulse breakdown
20



SHORT PULSE BENEFIT TO DIELECTRIC 

ACCELERATORS



• Dielectric disk-loaded waveguides introduced in the 1940’s-50’s

• Modern ceramics with high dielectric constant and low loss provide 

opportunity to realize high shunt impedance structures

DIELECTRIC DISK ACCELERATORS (DDA)

26 GHz 

Parameter

DDA DLA Copper-

Disk*

Aperture 3 mm 3 mm 3 mm

Outer Diameter 9.23 mm 4.99 mm 9.27 mm

Thickness 0.5 mm 1 mm 

(wall)

0.5 mm

Dielectric 

constant

50 10 N/A

Loss tangent 5e-4 1e-4 N/A

Group velocity 0.16c 0.11c 0.017c

Shunt 

Impedance

208 MΩ/m 50 MΩ/m 139 MΩ/m

Q 6400 2300 4300

Accel. gradient 363 MV/m 363 MV/m N/A

Surface gradient 660 MV/m 363 MV/m N/A

*Constant impedance 2π/3 structure, not suitable for 

short RF pulse acceleration due to low group velocity

• Higher: group velocity, shunt impedance, Q

• Tuning easier than for DLAs

• Drawback: surface electric field much higher 

than DLAs, fabrication difficult
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X-BAND DDA DEVELOPMENT
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TESTING RESULTS

102.3 MV/m accelerating gradient

(147 MV/m surface gradient)

NO multipactor observed in 

this short pulse regime!

Multicell DDA test@ May 2023 

(to be continued)

Single cell DDA test@ Dec. 2021

Metal

Dielectrics (εr)

Vacuum

Metal

Vacuum

εr

(a)

(b)

2a 2b
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THE FIRST APPLICATION: A PHOTOGUN

REACHING 400MV/M OF GRADIENT ON CATHODE



MOTIVATION

BDRE305

A. Grudiev et al., Phys. Rev. ST-AB, 12, 102001 (2009).

W. Wuensch et al., Proc. PAC03, 495–497, 2003.

➢ Empirical formula summarized 

from decade of high gradient 

accelerator research

➢ Early time study in CLIC, 

30GHz era

LCLS photogun, the most 

successful Cu photogun:

S-Band, 3~4 us rf pulse, 

120MV/m on Cathode

<10ns rf pulse, 

>300MV/m on 

Cathode→lower 

sc

? 1.More efficient for 

applications with 

insignificant beamloading.

2.Less dark current
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Overcoupled 

Pi mode

DESIGN---RF PROPERTIES
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DESIGN---BEAM SIMULATION

Parameter Value

Laser spot size 

on cathode

70 micron

Flat top laser 

rms length

3.2 ps

Peak field on 

cathode

350 MV/m

Charge 100 pC

Normalized 

emittance

0.15 mm-mrad*

RMS bunch 

length at exit

365 micron

Relative energy 

spread at exit

0.003

Beam energy at 

gun exit

3.1 MeV

Beam energy at 

exit

8.5 MeV

gun linac

* Optimized with existing 
components in hand 
(solenoid, linac, etc).
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ENGINEERING, FABRICATION, AND BENCH TEST
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Prototype 

TW-gun

Reflection signal from bi-directional coupler

a

a

b

b

c

c

d

d

Quick ramp-up 
Dark current 

loading

Conditioning & dark current 

reduction
➢ Achieved 350MV/m on cathode

➢ Observed strong dark current loading regime but quickly 

conditioned away

➢ It only took 70k pulses for a full condition

➢ Back to 200MV/m to 250MV/m region, no breakdown, no 

measurable dark current

Euclid, SBIR Grant #DE-SC0018709, 2020

CONDITIONING
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BEAMLINE---LASER ALIGNMENT

Beam

Cathode

Mirror is set to 
nominal 
position

Dotted line is 
perpendicular 

to beam.

Laser IN shown at 90°.

In order to reach the cathode, you need a 
~2° input angle. There is some adjustment 

in the mirror, but we had to close the 
vacuum, so, it is not accessible. 

Preliminary laser 

image on the cathode

➢ Challenging alignment to the TW-photogun cathode
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EXPERIMENT--FIRST BEAM!

(10/29, 2021)

TW-gun

Laser 
injection 
setup

➢ First beamline was constructed without Linac.

➢ The goal was to generate the photoelectron beam, 

measure its charge and energy.  Infer the gradient.

Beam on YAG at exit of gun

Beam on X4 energy spectrometer

~3MeV

Diagnostic 
beamline

32



BEAM STATISTICS (GUN ONLY)

“The result of such an analysis confirms that the maximum peak field attained during our experiment was 
E0 = 387.76+44.63−35.88 MV/m corresponding to a surface field at the iris of 1.55E0 ≃ 601.03+69.18 −51.61 MV/m.”

Experimental Summary

1. 387 MV/m

2. No measurable 

breakdown

3. No measurable dark 

current (estimated at 

1pC/pulse)

State of the art using CO2 cleaning →“0.6 

nC within 2 μs” input RF pulse.

G. Shu et al., "Dark current studies of an L-

band normal conducting RF gun," NIMA Vol. 

1010, (2021)

Xgun phase scan @340 MV/m33



BEAM MEASUREMENTS W/ A LINAC (JUNE 2022)

“LINAC” [1]

G. Chen et. al., NAPACC22
Emittance measurements and simulations from an x-band short-pulse 
ultra-high gradient photoinjector
https://epaper.kek.jp/napac2022/papers/moze3.pdf 
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https://epaper.kek.jp/napac2022/papers/moze3.pdf


• First attempted emittance measurement (beamline not 

optimized)
o 𝜀𝑛,𝑥 = 5.58 𝜇𝑚

o 𝜀𝑛,𝑦 = 11.26 𝜇𝑚 (due to geometry asymmetry of the linac)

o Kinetic energy: 5.9 MeV

o Breakdowns observed

~1.2 m quad spectrometer~1.13 m

G. Chen et. al., NAPACC22
Emittance measurements and simulations from an x-band short-pulse ultra-high gradient photoinjector
https://epaper.kek.jp/napac2022/papers/moze3.pdf

1ST BEAM EMITTANCE MEASUREMENT
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RESULTS: WHY IS MEASURED 𝜺 HIGH?  AND WHAT NEXT?

1. Non-ideal LINAC geometry 

o New LINAC design is proposed

2. Non-ideal solenoid

o New solenoid design is under review

Issues in the 1st 𝜺 measurement:  

➢ Thermal emittance measurement with the patched solenoid.

➢ Schottky effect study

Experiment since Aug. 2023:  

➢ Emittance measurement with a new dedicated solenoid and linac.

➢ Develop and test a cathode removable X-gun.

Planned experiment in July-Aug 2024:  
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ROBUSTNESS OF THE X-GUN IN BIAR

• Conditioning process is quick.

• A dark current loading region observed (~40,000)

1st  Xgun conditioning (Dec. 2020)  2nd Xgun conditioning (Oct. 2022)  

• The Xgun fully conditioned very smoothly. No damage

• Did not observe dark-current

Immediately back to ~350MV/m after 

exposed to air for months

37



X-GUN WITH CATHODE PLUG
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E=371 MV/m for 300 MW.



XFEL IN BIAR?

TBA---9GeV 

Compact FEL in 

BIAR regime 

Fast filled accelerator
Yuliang Jiang, et al, PRAB 24, 112002 (2021)

Advantages:
• Short pulses

• Drive beam can generate RF at 
multiple frequencies

• Automatically sync’ed

Challenges:
• Still in research phase

• Kickers

• Waveguides
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NEAR TERM: 0.5GeV DEMONSTRATOR

• Demonstrate key technologies of SWFA based TeV class linear collider

• AWA-II

• Potential to be converted to a compact ICS gamma source

40

1. GW level rf power

2. 300MV/m of gradient

3. Drive beam distribution

CTE:
Pulser off

Pulser on

Fast kicker and septum

Drive beam

X-gun Stage I Stage II
Main beam



Klystron power Energy gain MeV/(MW*Trf[us]) 

per Str.

S-band standard 50MW, 3us 50MeV in 3m (16.7MeV/m) 0.33

NLC Xband 75MW x 2=150MW, 1.6us, 

compress to 450MW, 

400ns

270MeV in 6.5m ( 6 structures, total 

5.4m structures,83% fill factor, 

50MeV/m)

1.5

CLIC-Kly Xband 53MW x 2=106MW, 2us, 

compress to 170MW x 

2=340MW, 334ns

276MeV in 4.6m (80% fill factor, 8 

structures, 0.46m ea., 75MeV/m)

2.43

CLIC-TBA Xband 132MW from ea. PETS, 

176.5ns

46MeV in 57.5cm (80% fill factor, 2 

structures, 23cm ea. , 100MeV/m)

2

Short Pulse X-band-TBA 537MW from ea. DPETS,

22ns

36MeV in 37.5cm (80% fill factor, 

one structure, 30cm, 120MeV/m)

3

Short pulse X-band Kly 20MW, 1us, compress to 

250MW, 10ns

40MeV in 25cm (80% fill factor, one 

structure, 20cm, 200MeV/m)

16*

If we use this as a Figure 

of Merit for an accelerating 

structure,

Def: RF usage rate

SINGLE BUNCH APPLICATIONS
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Active Pulse Compressor--- limit by 

BD of the switch for very high 

power

Passive Pulse Compressor--- limit by 

system bandwidth for very short pulse 

length.

PULSE COMPRESSOR FOR BIAR
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KLYSTRON-BASED XFEL IN BIAR From P. Piot, Channeling 2023



SUMMARY

• DISCOVERED NEW ACCELERATION REGIME: BIAR, WHICH HAS BENEFITS OF 

• high gradient (>300 MV/m)

• Fast conditioning

• low dark current (<1pC)

• No multipactor for DDA

INTO THE FUTURE

• New linac for real beam acceleration in BIAR

• New Xgun (removable back wall, optimized solenoid, etc), Extend beamline (new linac) Targeting: 10 

MeV and 100nm@100pC, … 100 MeV injector … Applications … UED … XFEL ... LC … 
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