Machine Learning Applications at SLAC

Jan 12, 2024 D. Ratner SLAC National Accelerator Laboratory

- 2. Anomaly detection
- 3. ML for inverse problems

(But there are also many other applications across SLAC)

SLAC's mission revolves around major scientific facilities

Research projects across biology, chemistry, geology, physics, energy sciences, materials science, and more

Particle accelerators for x-ray science

Vera Rubin

Cryo-EM facilities for COVID research

Introduction to X-ray Free-Electron Lasers (XFELs)

X-ray free-electron lasers: Accelerator driven x-ray sources to study ultrafast, ultrasmall scale phenomena

Online optimization

XFEL tuning:

- XFELs are instabilities → very sensitive to initial conditions
- In total 500 hours/year on single task of quad tuning

Automate (e.g. simplex)

Online optimization: Bayesian optimization

SLAC

Model-based optimization

Advantage 1: Balance "exploitation vs. exploration"

➔ Find global maximum

Mitch McIntire

Online optimization: Bayesian optimization

Model-based optimization

Advantage 2: Existence of model enables use of physics, archived data

e.g. learning correlations in data improves modeling

Can tune from pure noise

Bayesian Optimization of a FEL, Duris et al., PRL, 2020

Online optimization: Bayesian optimization

Model-based optimization

Advantage 2: Existence of model enables use of physics, archived data

e.g. learning correlations in data improves modeling

Bayesian Optimization of a FEL, Duris et al., PRL, 2020

SLAC

Model-based optimization

Upshot: \rightarrow Faster tuning (factor of 4 vs. simplex) \rightarrow More robust tuning (e.g. tune from noise)

Example 1: Fast tuneup in high dimensions

Example 2: tuning quadrupoles from pure noise

Online optimization: multi-point optimization

Classic problem from aeronautics design: how to optimize an airplane wing?

- 1. Choose a design
- 2. Simulate range of conditions
- 3. Combine into single metric / multiple metrics
- 4. Loop to step 1

FLIGHT PLANNING

Very slow process! Very information inefficient!

PUSH BACK / TAXI

FINAL APPROACH / LANDING

DOMESTIC/OCEANIC CRUISE

Online optimization: multi-point optimization

Accelerator example: emittance optimization, i.e. beam quality

W. Neiswanger, S. Miskovich, A. Edelen

Bayesian Algorithmic Execution (BAX)

Standard BO: model and find optimal point in black box function f(x)

BAX: model f(x), and find optimal output of A[f(x)], for known algorithm $A[\cdot]$

Emittance example:

- Model beam size behavior, $f(\boldsymbol{x})$
- Algorithm, $A[\cdot]$, outputs minimum emittance from f(x)
- Measure new beam size that has the biggest impact on output of $A[\cdot]$

Note: We never actually measure emittance... just calculate from a virtual model!

(For computer scientists, acquisition function calculated from mutual information of algorithm output and model posterior)

BAX: <u>https://willieneis.github.io/bax-website/</u> W. Neiswanger et al., ICML, 2021

12

Online optimization: multi-point optimization

Accelerator example: emittance optimization, i.e. beam quality

W. Neiswanger, S. Miskovich, A. Edelen

Design optimization: dynamic/momentum aperture

Dynamic aperture optimization for storage rings

- Goal: maximize dynamic aperture (i.e. the blue area):
- Larger aperture → longer lifetime → higher luminosity/brightness

- Each calculation of the objective function (blue area) requires 1000s of simulations
- MultipointBAX: choose individual particles to simulate, not full DA scans.
 Potentially orders of magnitude faster
- ...requires NN modeling! (New topic of research.)

SLAC

2. Anomaly detection

3. ML for inverse problems

Anomaly Detection

Failure prediction at accelerators:

- Failures cause downtime, degrade performance
- 1000s of subsystems \rightarrow frequent failures
- 200k variables to monitor at LCLS → impossible to do manually
- Big data, but nearly none of it labeled

Case study: RF station faults

- RF stations provide power for acceleration
- Most common fault at LCLS (1000s/year)
- Degrades performance even if no downtime
- Years of data, only dozens labeled

Existing solution #1: Thresholding on subsystem amplitudes

Readbacks of station power condensed to "status bit" for each of 80 stations

Status bit '0' if healthy, and flips to '1' if RF amplitude changes more than 2%

Status bit has multiple problems:

- Too simplistic (only looks for sudden drops)
- Too permissive (misses subtle faults)
- Too noisy (lots of false positives)

70% of alarms are false (i.e. poor precision)

Recall = TP/(TP+FN)

Precision = TP/(TP+FP)

TP = true positive, FP = false positive, FN = false negative

20

Existing solution #2: Manual, beam-based anomaly detection

New approach: Beam-based algorithm inspired by operators

Simultaneous anomalies trigger alarm

Coincident Anomaly Detection (CoAD)

Consider two algorithms making predictions on two streams of data

Red stars = consistent
 black stars = inconsistent

• More **red** = higher recall; less **black** = higher precision

FP rate = product of black star rates TP rate = red star rate – FP rate

➔ Unsupervised precision/recall

Consider two algorithms making predictions on two streams of data

We estimate unlabeled version of recall/precision from coincidence

Estimates can be **differentiable** → can train neural networks! i.e. a loss function, not just a metric

Formally the loss function is defined for NN outputs f_1, f_2 :

$$\hat{F}_{\beta} = \frac{(1+\beta^2)(J-D)}{J+\alpha\beta^2} \le F_{\beta} = \frac{(1+\beta^2)(PR)}{R+\beta^2 P}$$

$$J = \mu_{12} = \mathbb{E}(f_1 f_2) \text{ : red star rate} \qquad D \stackrel{\text{def}}{=} \frac{\mu_1 - \mu_{12}}{1 - \mu_2} \frac{\mu_2 - \mu_{12}}{1 - \mu_1} \text{ : estimated FP rate}$$

 μ_i : mean of f_i α : Estimated anomaly rate β : Weighting factor (recall vs. precision)

CoAD for RF Station Faults

Implementation for RF station task:

-50

Case Study 1: Performance in the control room

Summary of predictions on 4 months of data

	Precision	Recall (events)	100x more anomalies vs.	
Manual recording by operator	NA	6	30% more anomalies vs	
Status bit	0.31	385	status bit	
Coincident Detection	0.88 🔫	504		
		6	x fewer false positives vs. status bit	

Live deployment in LCLS control room!

Ryan Humble, Finn O'Shea, Zhe Zhang

Anomaly detection: other applications

Searching for edge-localized modes in tokomaks

- Lots of data
- Mostly unlabeled
- Multi-modal diagnostics

- 2. Anomaly detection
- 3. ML for inverse problems

Inverse problems

SLAC

Generic inverse problem:

X Inputs

1. Solve optimization problem: $y^* = \operatorname*{argmin}_{y} \left| \Phi(y) - x \right|^2$

2. Train a neural network:

3. Train a cycle-consistent neural network:

Caveat: Φ must be differentiable!

Measure amplitude of power/spectrum: can I recover phase?

Approach #1: Iterative optimization

Approach #1: Iterative optimization

Approach #2: Train a labeled neural network

Approach #3: Train a neural network with cycle-consistent loss

"Physics-informed neural network" (PINN)

Advantages: No need for labeled data, train directly on experimental data

Inverse problems: Single-particle imaging

Single-particle imaging of biomolecules with Cryo-EM:

- Structures for un-crystallizable proteins/RNA
- Closer to in-vivo than a crystal
- Access to *conformations* not just average structures

Inverse problems: Single-particle imaging

Recast as an inverse problem:

Iteratively solve for pose and densities (e.g. expectation-maximization)

Why use deep learning?

Recast as an inverse problem:

Iteratively solve for pose and densities (e.g. expectation-maximization)

Pose

Why use deep learning?

SLAC

1. Scaling with particle number: classical methods require pose for every particle

Iteratively solve for pose and densities (e.g. expectation-maximization)

Why use deep learning?

SLAC

1. Scaling with particle number: classical methods require pose for every particle

2. Solving for conformations: classical methods cannot handle complex, continuous variation

Inverse problems: Single-particle imaging

Recast as an inverse problem:

Iteratively solve for pose and densities (e.g. expectation-maximization)

Why use deep learning?

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning

Harshit Gupta⁶, Michael T. McCann⁶, Member, IEEE, Laurène Donati⁶, and Michael Unser⁶, Fellow, IEEE

3D Flexible Refinement: Structure and Motion of Flexible Proteins from Cryo-EM

Ali Punjani^{1,2,3} David J. Fleet^{1,2}

¹University of Toronto ²Vector Institute

ctor Institute ³Structura Biotechnology Inc.

April 2021

39

Inverse problems: Single-particle imaging

Ultimate goal is to produce an atomic model...

...but fitting an atomic model is still a manual process

G. Skinkiotis, D. Southworth, Microscopy 2016

Recent work: directly learn atomic model conformations on data

- Parametrize atomic model with normal mode analysis (NMA)
- Train encoder network to map each image to a point in NMA space
- Differentiable simulation maps NMA space to atomic model to microscope image

SLAO

Inverse problems: Single-particle imaging

First experimental results on spliceosome:

- Fitting 16 normal modes, 140k particles, 128x128 images
- Uncertainties from cross-validation (2 partitions)

Signal-to-noise

Key requirement for PINNs: differentiable simulator

Example of benefit from cross-domain collaboration: same team working on LArTPC, MAGIS, and CryoEM!

LArTPC (e.g. DUNE) simulator:

S. Gasiorowski, Y. Nashed, Y. Chen, K. Terao et al.

MAGIS-100 simulator

Cheong, Sanha, et al (2022)

Acknowledgements / Stanford-SLAC Collaboration

Thanks to everyone who worked on these projects!

Stanford CS		SLAC MLI	SLAC Domains		
BAX	Stefano Ermon Willie Neiswanger	Sara Miskovich Sathya Chitturi	n Auralee Edelen i Chris Tassone		
detection	Eric Darve Ryan Humble	Finn O'Shea Zhe Zhang	William Colocho Matt Gibbs Ryan Coffee Maria Elena Monzari		
CryoEM	Gordon Wetzstein	Youssef Nashed Sean Gasiorowski Leah Reeder	Fred Poitevin Ariana Peck Michael Kagan	Axel Levy Kazu Terao Yifan Chen	

Thanks for your attention!

Backup

SLAC's mission revolves around major scientific facilities

Machine Learning Initiative (MLI) structured around 3 connected pillars:

Example: SLAC Particle Accelerator Data Set

Does simple thresholding on RF station amplitude work? No! Thresholding on the RF amplitude misses anomalies and triggers false alarms Nearly 20% false negatives and false positives from a simple threshold

