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Outline

1. Online control of x-ray facilities

2. Anomaly detection

3. ML for inverse problems

(But there are also many other applications across SLAC)
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Introduction to SLAC

LCLS-II

Particle accelerators for x-ray science

Vera Rubin 

Observatory

Cryo-EM facilities for 

COVID research

SLAC’s mission revolves around major scientific facilities

Research projects across biology, chemistry, geology, physics, 

energy sciences, materials science, and more
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Introduction to X-ray Free-Electron Lasers (XFELs)

Suga et al.
Photosystem II

Shock waves in 

extreme conditions

Milathianaki et al.

Si

Ekeberg et al.,

Single particle imaging (Mimivirus)

X-ray free-electron lasers: Accelerator 

driven x-ray sources to study ultrafast, 

ultrasmall scale phenomena



Online optimization

XFEL tuning:
• XFELs are instabilities  very sensitive to initial conditions

• In total 500 hours/year on single task of quad tuning

Badger

optimizer

Automate (e.g. simplex)

5

Quadrupole 

magnets

FEL power



Acquisition point

Online optimization: Bayesian optimization

Acquisition 

function

Ground 

truth

Posterior

Model-based optimization

Gradient optimizer

Advantage 1: Balance “exploitation vs. exploration”

 Find global maximum

Bayesian optimizer

Mitch McIntire 6



Measured Modeled
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Advantage 2: Existence of model enables use of 

physics, archived data 

Model-based optimization

e.g. learning correlations in 

data improves modeling 

Online optimization: Bayesian optimization

Bayesian Optimization of a FEL, Duris et al., PRL, 2020

• 5x faster than simplex

• Can tune from pure noise



Measured Modeled
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Advantage 2: Existence of model enables use of 

physics, archived data 

Model-based optimization

ρ = 0.7ρ = 0

Groundtruth
Model, 

no correlation

Model, 

w/ correlation

e.g. learning correlations in 

data improves modeling 

Online optimization: Bayesian optimization

Bayesian Optimization of a FEL, Duris et al., PRL, 2020



Online optimization: Bayesian optimization

Model-based optimization

Example 2: tuning 

quadrupoles from pure noise

Example 1: Fast tuneup in 

high dimensions

Upshot:  Faster tuning (factor of 4 vs. simplex)

 More robust tuning (e.g. tune from noise)

Bayesian Optimization of a FEL, Duris et al., PRL, 2020

4 parameters

9Joe Duris, Dylan Kennedy



Online optimization: multi-point optimization

Classic problem from aeronautics design: 

how to optimize an airplane wing?

10Image courtesy FAA

1. Choose a design

2. Simulate range of conditions

3. Combine into single metric / 

multiple metrics 

4. Loop to step 1

Kenway, Martins (2014)

Very slow process!

Very information inefficient!



Beam size measurement
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Measurement parameter

(e.g. matching quadrupole)
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Measurement parameter

(e.g. matching quadrupole)

Online optimization: multi-point optimization

11W. Neiswanger, S. Miskovich, A. Edelen

Calculate 

emittance

Accelerator example: emittance optimization, i.e. beam quality

BO has multiple problems:

• Sampling inefficient

• Information inefficient

• Difficult to model

Models beam size efficiently…

…but we want to minimize 

emittance, not beam size



Online optimization: multi-point optimization

Bayesian Algorithmic Execution (BAX)
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 BAX: https://willieneis.github.io/bax-website/ W. Neiswanger et al., ICML, 2021

Emittance example:

• Model beam size behavior, 

• Algorithm,          , outputs minimum emittance from 

• Measure new beam size that has the biggest impact on output of 

(For computer scientists, acquisition function calculated from mutual 

information of algorithm output and model posterior)

Standard BO: model and find optimal point in black box function 

BAX: model          , and find optimal output of                , for known algorithm

Note: We never actually measure emittance… just calculate from a virtual model!

https://willieneis.github.io/bax-website/


Online optimization: multi-point optimization
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Simulated optimization, LCLS Injector Experimental optimization, LCLS Injector

W. Neiswanger, S. Miskovich, A. Edelen

~2 minutes

Accelerator example: emittance optimization, i.e. beam quality



Design optimization: dynamic/momentum aperture

Goal: maximize dynamic aperture 

(i.e. the blue area):

Larger aperture  longer lifetime 

 higher luminosity/brightness
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Dynamic aperture optimization for storage rings

Image courtesy J. Wan, Y. Jiao

• Each calculation of the objective function (blue area) requires 1000s of 

simulations

• MultipointBAX: choose individual particles to simulate, not full DA scans. 

Potentially orders of magnitude faster

• …requires NN modeling!  (New topic of research.)



Outline

1. Online control of x-ray facilities

2. Anomaly detection

3. ML for inverse problems



Anomaly Detection
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SLAC Linear Accelerator 

and 280 Overpass

SLAC RF Stations

Failure prediction at accelerators:

• Failures cause downtime, degrade 

performance

• 1000s of subsystems  frequent failures

• 200k variables to monitor at LCLS 

impossible to do manually

• Big data, but nearly none of it labeled



Anomaly Detection: RF Station Faults
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SLAC Linear Accelerator 

and 280 Overpass

SLAC RF Stations

Case study: RF station faults

• RF stations provide power for acceleration

• Most common fault at LCLS (1000s/year)

• Degrades performance even if no downtime

• Years of data, only dozens labeled



Anomaly Detection: RF Station Faults
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Existing solution #1: Thresholding on subsystem amplitudes

Readbacks of station power condensed to 

“status bit” for each of 80 stations 

Status bit ‘0’ if healthy, and flips to ‘1’ if RF 

amplitude changes more than 2%

Status bit has multiple problems: 

• Too simplistic (only looks for sudden drops)

• Too permissive (misses subtle faults)

• Too noisy (lots of false positives)
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Time (min)0 5

RF station amplitude for 1 station

70% of alarms are false

(i.e. poor precision)

RF station diagram 

Recall = TP/(TP+FN)        Precision = TP/(TP+FP)

TP = true positive, FP = false positive, FN = false negative



Anomaly Detection: RF Station Faults
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Operators watch for a drop in X-ray power here
After observing a drop, search for 

RF stations with warning/fail status

Existing solution #2: Manual, beam-based anomaly detection

Many missed events

(recall ~ 1%)



Anomaly Detection: RF Station Faults
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New approach: Beam-based algorithm inspired by operators

Highway 

280

Algorithm #1 looks for 

subsystem anomalies

RF stations

Beam 

position 

monitors

Algorithm #2 looks at 

final beam quality

Simultaneous anomalies trigger alarm

Question: How do we train 

these algorithms with no 

labels? 

Key insight: A ‘good’ pair of 

algorithms will be self-consistent



Coincident Anomaly Detection (CoAD)
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Consider two algorithms making predictions on two streams of data

Subsystem

Beam quality

Algorithm 1

Algorithm 2 Prediction

Unknown 

machine state

• Red stars = consistent
black stars = inconsistent

• More red = higher recall; 
less black = higher precision

Subsystem (s)

Quality (q)
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FP rate = product of black star rates

TP rate = red star rate – FP rate

Prediction Self-

Consistency

metric

 Unsupervised precision/recall



Coincident Anomaly Detection (CoAD)
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Consider two algorithms making predictions on two streams of data

We estimate unlabeled version of recall/precision from coincidence

Estimates can be differentiable can train neural networks!

i.e. a loss function, not just a metric

Formally the loss function is defined for NN outputs :

: Estimated anomaly rate : Weighting factor (recall vs. precision)

: red star rate : estimated FP rate



CoAD for RF Station Faults
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RF Station 

data

Beam 

Data

Estimated 

precision/recall

Implementation for RF station task:

Network 1

Network 2

Unsupervised 

loss function

Anomaly 

confidence

Anomaly 

confidence



Case Study 1: Performance in the control room
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Precision Recall 

(events)

Manual recording by 

operator

NA 6

Status bit 0.31 385

Coincident Detection 0.88 504

6x fewer false positives vs. status bit

100x more anomalies vs. 
manual recording

30% more anomalies vs. 
status bit

Summary of predictions on 4 months of data

Ryan Humble, Finn O’Shea, Zhe Zhang

Live deployment in LCLS control room!
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Anomaly detection: other applications
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Searching for edge-localized modes in tokomaks

Fusion-

cdt

Green lines: existing State-of-art

Yellow bands: DNN trained with coincidence

F. O’Shea

• Lots of data

• Mostly unlabeled

• Multi-modal diagnostics

Interferometers, 

beam emission 

spectroscopy

Filterscopes
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Generic inverse problem:

Inverse problems
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F

?

1. Solve optimization problem: 

2. Train a neural network: x y

3. Train a cycle-consistent 

neural network: 

X

Inputs

Y

Target

x y

F

Caveat: F must be 

differentiable!



Input power points

(3fs FWHM resolution)

Input spectral power points 

(80meV FWHM resolution)

Maxwell, Timothy J., et al. International 

Society for Optics and Photonics, 2014.

power

Spectrum

Measure amplitude of power/spectrum: can I recover phase?

Inverse problems: X-ray Pulse Reconstruction

30



Input power points

(3fs FWHM resolution)

Input spectral power points 

(80meV FWHM resolution)

Maxwell, Timothy J., et al. International 

Society for Optics and Photonics, 2014.

power

Spectrum

Measure 

Power

Measure 

Spectral 

power

Guess 

Field

F(t),F(w)

Inverse problems: X-ray Pulse Reconstruction

31

F

Approach #1: Iterative optimization



Measure 

Power

Measure 

Spectral 

power

Guess 

Field

F(t),F(w)
…

106-109 times

Pulse #1

Pulse #n

Inverse problems: X-ray Pulse Reconstruction

32

F

Approach #1: Iterative optimization



Inverse problems: X-ray Pulse Reconstruction
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Problem: absolute phase is meaningless!

Simulated

Input

power

Spectrum

Labeled loss,

Predicted 

Output

Simulated Output

field

field

NN Inverse 

Model

Approach #2: Train a labeled neural network 

D. Ratner et al., Opt. Exp., 2021



Inverse problems: X-ray Pulse Reconstruction
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Input

power

Spectrum

power

Spectrum

Predicted 

Input

Predicted 

Output

Physics 

forward 

model, F

field

“Physics-informed neural network” (PINN)

Advantages: No need for labeled data, train directly on experimental data

NN Inverse 

Model

F

D. Ratner et al., Opt. Exp., 2021

Approach #3: Train a neural network with cycle-consistent loss

Unlabeled loss,
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Inverse problems: Single-particle imaging

Greg Pintilie

Kappel et al. 

Single-particle imaging of biomolecules with Cryo-EM:

• Structures for un-crystallizable 

proteins/RNA

• Closer to in-vivo than a crystal

• Access to conformations not just 

average structures



Inverse problems: Single-particle imaging
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Density map

Pose

F

Iteratively solve for pose and densities 

(e.g. expectation-maximization)
Why use deep learning?

Recast as an inverse problem:



Inverse problems: Single-particle imaging
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Recast as an inverse problem:

Density map

1. Scaling with particle number: 

classical methods require pose for 

every particle

Pose

F

Iteratively solve for pose and densities 

(e.g. expectation-maximization)
Why use deep learning?



Inverse problems: Single-particle imaging
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Recast as an inverse problem:

Density map

Iteratively solve for pose and densities 

(e.g. expectation-maximization)

1. Scaling with particle number: 

classical methods require pose for 

every particle

2. Solving for conformations: 

classical methods cannot handle 

complex, continuous variation

F

Pose

Why use deep learning?



Inverse problems: Single-particle imaging
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Recast as an inverse problem:

CryoDRGN

Iteratively solve for pose and densities 

(e.g. expectation-maximization)
Why use deep learning?
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G. Skinkiotis, D. Southworth, Microscopy 2016

Ultimate goal is to produce an atomic model…

Inverse problems: Single-particle imaging

…but fitting an atomic 

model is still a 

manual process
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Inverse problems: Single-particle imaging

Encoder 

network

NMA

Decoder
Conformation 

Space

Orientation 

Space

Microscope 

Digital Twin

Input

Output

Forward model
Latent NMA 

representation

Learn network/model parameters by minimizing the 

difference between input and output images

Recent work: directly learn atomic model conformations on data

• Parametrize atomic model with normal mode analysis (NMA)

• Train encoder network to map each image to a point in NMA space

• Differentiable simulation maps NMA space to atomic model to 

microscope image

NMA viz, T. Grant
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Inverse problems: Single-particle imaging

First experimental results on spliceosome:

Absolute error

Signal-to-noise

A

NMA latent space Observed motion

• Fitting 16 normal modes, 140k particles, 128x128 images

• Uncertainties from cross-validation (2 partitions)

Y. Nashed, F. Poitevin, et al.
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Inverse problems: differentiable simulations

Key requirement for PINNs: differentiable simulator

Example of benefit from cross-domain collaboration: same team working on LArTPC, 

MAGIS, and CryoEM!

LArTPC (e.g. DUNE) simulator:

S. Gasiorowski, Y. Nashed, Y. Chen, K. Terao et al.

MAGIS-100 simulator

Cheong, Sanha, et al (2022)
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Thanks for your attention!



Backup



Introduction to SLAC

Machine Learning Initiative (MLI) structured around 3 connected pillars:

Benchmark 

Datasets

Stanford AI 

Research

Scientific 

Facilities/ 

Challenges

• Scientific facilities (SLAC)

• Algorithmic development (Stanford)

• Benchmark datasets (SLAC)

Scientific facilities 

generate datasets

Data supports 

AI/ML research

New algorithms 

applied to 

facilities/grand 

challengesMLI

Tackle grand 

challenges in Science 

and AI/ML

SLAC’s mission revolves around major scientific facilities
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False negatives False positives

Nearly 20% false negatives and false positives from a simple threshold

Does simple thresholding on RF station amplitude work?
No!  Thresholding on the RF amplitude misses anomalies and triggers false alarms

Example: SLAC Particle Accelerator Data Set


