Modern cathode materials for LCLS-II HE

And other applications

John Smedley

Thanks to J. Lewellen, T. Xu, M. Gaowei, J. Maxson, R. Tromp, T. Vecchione, the MSU gun team and the cathode teams at ASU, BNL, Cornell, HZDR, LANL and SLAC

LCLS-II and LCLS-II-HE

The SLAC/FRIB/HZDR/Argonne SRF gun development program Cathodes – the first frontier of beam quality

- Three Step Model
- Cathode R&D towards single crystal, low MTE cathodes
 - Cesium Antimonide Family
 - Cesium Teluride
- Epitaxy!

Other Cathode applications

- Ultrafast Electron Diffraction
- Optical Near Field Electron Microscopy

SC Linac

Cryoplant

NC Linac Spreader

Bypass

Beam Transport

Undulators & X-Ray Transport

X-Ray Experimental Area (NEH and FEH)

LCLS-II

‡ Fermilab

CD-0: 2010 TTO: 2023 → 13 years

~ 5M hours ~ \$1B 8/23/23 Soft X-ray Undulator, 450 eV

Profile Monitor IM2K0:XTES:CAM 23-Aug-2023 15:13:43 15 10 5 y (mm) 0 -5 -10 -15 -10 -5 15 -15 5 10 0 x (mm)

9/6/23 Hard X-ray Undulator, 1050 eV

Profile Monitor IM3L0:PPM:CAM 06-Sep-2023 10:44:11

LCLS-II-HE Mission

Deliver the ability to observe and understand the structural dynamics of complex matter at the atomic scale with hard x-rays, at ultrafast timescales, and in operational environments.

LCLS-II-HE provides high-rate, FEL radiation at Ångstrom wavelengths

LCLS-II-HE Overview

- 1. Add 23 additional cryomodules (L4 linac) to double the LCLS-II accelerator energy: 4 GeV to 8 GeV
- 2. Install new cryogenic distribution box and transfer line between the cryoplant and the new L4 linac
- 3. New long period soft X-ray undulator
- 4. Upgrade the LCLS hard X-ray instruments for MHz beam and data rates
- 5. Design low-emittance injector and SRF gun for extended hard X-ray performance

Preliminary Key Performance Parameters

Performance Measure	Threshold	Objective
Superconducting linac electron energy	7 GeV	8 GeV
Electron bunch repetition rate in linac	93 kHz	929 kHz
Charge per bunch in SC- linac	0.02 nC	0.1 nC
Photon energy range	<mark>250</mark> − 8,000 eV	250 to ≥ 20,000 eV
High rep-rate-capable HXR instruments	≥ 1	≥ 4
FEL photon quantity per bunch (10 ⁻³ BW)	5×10 ⁸ (50× spont. @ 8 keV)	> 10 ¹¹ @ 8 keV (200 μJ) AND > 5×10 ⁹ @ 20.0 keV (20 μJ)

Motivation for the Low Emittance Injector (LEI)

Provide lower emittance beams to extend photon energy reach, enabling a broader photon physics program

• Less costly than increasing beam energy, which is currently limited by space constraints

Provide redundant electron source

- Qualify second injector while current one operates
- Once online, could quickly revert to original injector if problems occur
- In the interim, a spare LCLS-II gun with modest improvements is being built

Electric field on cathode 30 MV/m is required to achieve 0.1 um emittance.

Parallel effort to develop an SC gun and injector

Step 1: Develop low emittance, high-gradient SC gun

- Design, build and test a ~ 186 MHz quarter-wave SRF gun over 3 years
- Deliverable is to demonstrate 30 MV/m gradient performance
- Development cost: \$10M

Step 2: New injector and tunnel for LCLS-II-HE

- Expand project scope to include SC gun, buncher cavities, beamline, and new injector tunnel.
 - Provides infrastructure to commission a new gun without interruption to science operations
 - Provides spare gun capability
 - Enhances science program with pump-probe operation capability
- Build SRF gun based on lessons from Step 1

A 2-step process is needed to demonstrate the gun technology before inclusion into the project scope.

Injector Scope – currently contingency scope

- New injector tunnel adjacent to the existing accelerator housing
 - New tunnel at grade-level
 - Enables independent and parallel operation
- Separate cryoplant and distribution systems
 - Increases performance with taxing LCLS-II cryoplants
 - Enables independent operation & commissioning

High brightness injector

- SRF gun
- NC and SRF buncher cavities
- LO' cryomodule
- Diagnostics beamline
- Local e⁻ dump

11

What do we need from the cathode?

- LCLS-II-HE may install a new, low-emittance injector in a new tunnel at the west end of the SLAC linac. Goal: $\epsilon_{n,rms,95\%}$ < 0.1 µm @ 100 pC
- 30 MV/m on cathode
- MTE < 184 meV
- Lifetime > 1 week
- "green" illumination

12

Semiconductor Photocathodes

The primary path to high average current in photoinjectors The good points: However: QE can be >10% Require UHV (<0.1 nTorr) Many use visible light Limited Lifetime Polarized cathodes possible Response time Common types: Complicated Cs₂Te – QE ~7% @ 262 nm, Lifetime ~1yr K₂CsSb – QE >4% @ 532 nm, Lifetime ~weeks Cs:GaAs – QE ~0.5% @ 800 nm (polarized), >6% @ 527 nm

W.E. Spicer & A. Herrera-Gomez, Modern Theory and Applications of Photocathodes, SLAC-PUB-6306 (1993)

Three Step Model of Photoemission - Semiconductors

Goal: understand the physics of electron excitation and emission

1) Excitation of e⁻

Reflection, Transmission Energy distribution of excited e⁻

Three Step Model of Photoemission - Semiconductors

1) Excitation of e⁻

Reflection, Transmission Energy distribution of excited e⁻

2) Transit to the Surface

e⁻-phonon scattering e⁻-defect scattering e⁻-e⁻scattering Random Walk

Three Step Model of Photoemission - Semiconductors

1) Excitation of e⁻

Reflection, Transmission Energy distribution of excited e⁻

- 2) Transit to the Surface
 - e⁻-phonon scattering e⁻-defect scattering e⁻-e⁻scattering Random Walk
- 3) Escape surface
- Overcome Electron affinity Surface termination impacts Multiple tries Need to account for Random Walk in cathode suggests Monte Carlo modeling Integrating probabilities at each step provides framework to predict QE

Brightness limited by photocathode MTE

MTE limiting factors -Surface non-uniformities

Physical Roughness $MTE_{field} = \frac{\pi^2 a^2 E_0 e}{2\lambda}$ J. Feng, S. Karkare *et al*, J. Appl. Phys. 121, 044904 (2017)

Chemical Roughness

S. Karkare and I. Bazarov, Phys. Rev Applied, 4, 024015 (2015)

Combined Physical and Chemical Roughness

G. Gevorkyan et al. Phys. Rev. ST-Accel and Beams, 21, 093401(2018)

Need single crystal ordered surfaces to get sub-10 meV scale MTE

Traditional Sequential Deposition of K₂CsSb High QE and Rough Surface

Emittance vs field measured with Momentatron, 532 nm light

T. Vecchione, et al, Proc. of IPAC12, 655 (2012)

In operando analysis during growth

Our growth method:

Real-time thickness, stoichiometry, XRD measurements

Conventional photocathode growth: Photocurrent oriented. Maximize quantum efficiency.

22

Experimental setup NSLS-II/ISR

Experimental set up: K₂CsSb cathode growth

Reaction Dynamics

Antimony evaporated on Si, 0.2 Å/s; crystallize at 4nm K deposition dissolves Sb layer - This is where roughening occurs! QE increase corresponds with K_xSb crystallization Cs increases lattice constant and reduces defects M. Ruiz-Osés et al., APL Mat. 2, 121101 (2014)

Ternary Co-evaporation

Simultaneously evaporate from Sb evaporator and K,Cs effusion cells

Stoichiometry controlled by real time XRF

This works for the entire Alkali antimonide family – we've created pseudo single crystals with a wide range of stoichiometries

Surface Roughness & QE

Simultaneous evaporation of all constituents results in no crystal phase transformation Smooth, reproducible and ultra-high QE. Highly Crystalline!

Co-deposition leads to efficient and ultra-smooth cathodes

Quantity	Sequential deposition	Co-deposition
RMS roughness (nm)	2.5	0.6 5 MV/m
$\epsilon_5 \ (\mu m/mm \ rms)$	0.18	0.07
ϵ_{20} (µm/mm rms)	0.36	0.14 ← 20 MV/m
ϵ_{100} (µm/mm rms)	0.80	0.31
		100 MV/m

J. Feng et al., J. Appl. Phys., 121(4) 044904, 2017

20 MV/m

- significant emittance degradation for sequential method - no practical degradation with co-deposition
- LN2 threshold emission
 - significant degradation, even with co-deposition
 - we need films smoother than 0.6 nm!!

Let's apply this to Cs-Te cathode growth

M. Gaowei, J. Sinsheimer, D. Strom, J. Xie, J. Cen, J. Walsh, E. Muller, and J. Smedley Phys. Rev. Accel. Beams 22, 073401 – Published 23 July 2019

Sequential vs Co-dep CsTe -- XRF

Cs.

Realtime analysis : Co-deposition

~230nm

- Starts to crystalize ~ 25 nm of total thickness.
- Same phase throughout the growth.

CsTe cathode Quantum efficiency

- Co-dep can result in much higher QE than sequential
- over cesiation might lead to Cs build-up on the cathode surface and lower the QE
- QE can be recovered by removing the access Cs

M. Gaowei, J. Sinsheimer, D. Strom, J. Xie, J. Cen, J. Walsh, E. Muller, and J. Smedley Phys. Rev. Accel. Beams 22, 073401 – Published 23 July 2019

Wavelength (nm)

CsTe cathode surface roughness: XRR analysis

	Thickness (Å)	Roughness (Å)	R009_AfterCs R009_AfterLL
FINAL Cs2Te/Cs2Te	968.3 ± 2.9 (total Cs ₂ Te)	19.1 ± 0.2	
Cs2Te/Cs2Te	1026.1 ± 1.6 (total Cs ₂ Te)	19.10 ± 0.07	0.6 0.8 1.0 1.2 1.4 tth
Cs2Te	245.5 ± 1.7	9.55 ± 0.14	
Si Substrate	-	3.75 ± 0.02	

Epitaxial Growth

Cs₃Sb photocathodes are conventionally grown polycrystalline with disordered surfaces.

Reducing the intrinsic emittance may be limited by the surface disorder in the form of defects, grain boundaries, and roughness.

<u>Epitaxy</u> is the alignment of crystal layers with respect to an underlying crystal seed layer.

Why epitaxy?

 $2m_ec$

• Towards higher brightness: a figure for the quality of the electron beam.

Beam current: quantum efficiency, laser fluence

Mean transverse energy: Intrinsic momentum spread + roughness + laser heating + ...

- Material ordering eliminates defects (roughness, grain boundaries) that contribute to electron momentum spread (MTE).
- Epitaxy opens the door to band structure and/or QE engineering similar to work on single crystal GaAs and GaN.

^{-.} W. Liu, et., Appl. Phys. Lett. 109, 252104 (2016).

⁻ J. Marini,, Polarization engineered N-polar Cs-free GaN photocathodes, J. Appl. Phys. 124, 113101 (2018).

- > Flat, thin, and ordered films with near percent level QE at 530 nm are easily grown with PLD and x-ray/RHEED
- > A Cs:Sb stoichiometry ratio of 3:1 is derived from XRF for ordered Cs₃Sb films.

39

RHEED of K₂CsSb/New Substrate (Sample-2)

Substrate

RHEED of K₂CsSb

- □ RHEED image shows epitaxial growth.
- □ Streaks represent smooth surfaces with small domains.
- Dots represents 3D islands.

K ₂ CsSb on Substrate					
Peak # from center	D(pixel)	d (Å)	Close to Planes		
1 st	34.55	4.96	111		
2 nd	59	2.91	122		
3 rd	69.25	2.48	222		
4 th	90.4	1.90	133		

Azimuthal angular dependence of RHEED from Sample-2

Layer 1 of K₂CsSb Azimuthal Rotation, φ (deg) Azimuthal Rotation, φ (deg) 13 -16 -54 6 -8 -200 300 200 400 400 **Pixels Pixels**

Azimuthal angular dependence observed

41

- 55

Layer 3 of K₂CsSb

MHz MeV-UED to Enable Grand Challenge Science

The transfer of a proton or a hydrogen atom from one group (OH, -NH,) to another (C=O, -N=) has been referred to as 'the most general and important reaction in chemistry'

Proton-transfer reaction dynamics Abderrazzak Douhal^a, Françoise Lahmani^b, Ahmed H. Zewail^{c,*} Chemical Physics 207 (1996) 477–498

 Real-space observation of proton dynamics requires both proton sensitivity and high time resolution (< ~50 fs).

• Neutron scattering lacks time resolution, X-ray diffraction lacks proton sensitivity. Electron diffraction is the only viable path.

MHz MeV-UED based on the SRF gun will possess exquisite sensitivity and atomic spatial temporal resolutions to address one of the grand challenge sciences: Probing proton-transfer of chemical and biological process in its native environments.

U.S. DEPARTMENT OF Office of Science

Thanks to XJ Wang

Optical Near Field Electron Microcopy

Optical microscopy with significantly **sub wavelength** resolution Eventually fast enought to observe biological dynamics Key inovation:

Convert scattered photons into electrons in the optical near-field

Resolution is limited by the sample to electon emitting surface distance -> **need ultra-thin photocathodes!**

Good QE in the visible \rightarrow Cs₃Sb or K₂CsSb candidates

>1% @ 530 nm for good signal

Ultra-smooth ultra-thin layer

<10 nm film; <1 nm roughness to not degrade resolution

Suitable transparent substrate for ONEM back-illumination

SiN, SiC, graphene

Phys. Rev. Applied 16, 014008 (2021)

Thanks to Guido Stam

Positioning ONEM in LEEM

UV-ONEM using LED (275 nm)

1) Create embedded Au nanostructures

ONEM Proof of Principle!

2) Cover with photocathode layer: **Chromium**

Illumination time: Estimated resolution: **10-35 min.** 37 nm = λ/7

Quantum Efficiency

³⁰ Very good already at very low thicknesses
²⁵ Cutoff above 600 nm Roughness < 1 nm

20 월

e thickn

0 photocathode

5

0

Conclusions and Thanks

LCLS-II HE will bring world class hard x-ray performance to LCLS-II A new gun and injector are an option to further increase this reach Gun development and production underway Hopefully tunnel for LEI will be complete in early 2027 Semiconductor cathodes are the path to low emittance and high QE Ultrasmooth cathodes now available Epitaxy has been achieved on ordered substrates Applications at the cutting edge UED/UEM ONEM

MSU has the potential to bring cathode science and superconducting guns together

Thank you

Jefferson Lab

SLAC NATIONAL ACCELERATOR LABORATORY

Trends and observations

Modern photocathode development is focused in two areas: High average current (e⁻ cooling, CW FEL – FLASH, EuXFEL, LCLS-II) Ultra high brightness (UED/UEM) These are driving development of semiconductor cathodes

Spatial uniformity (better than 0.6nm RMS), Single crystal

A. Galdi et al., Appl. Phys. Lett. 118, 244101 (2021)M. Gaowei, et al., Phys. Rev. Accel. Beams 22, 073401 (2019)

Ultra thin/optical etalon

A. Alexander, et al., AIP Advances 11, 065325 (2021)

Sealed photocathode systems for commercial delivery

J. Smedley, et al., Alkali Antimonide Photocathodes for Everyone, PAC 2013, 1178

Graphene or HBN covered cathodes

J. Biswas, et al., APL Materials 10, 111115 (2022) H. Yamaguchi, et al., npj 2D Materials and Applications, 12, (2017)