Tong Zhou, et al.

Lawrence Berkeley National Laboratory

FRIB APES (MSU) Sept 8, 2023

Acknowledgements

• LBNL Collaborators: ATAP Division:

ATAP Division:Russell Wilcox, Siyun Chen, Dan Wang, Mahek Logantha, Hao Ding, Deepak Sapkota, Qing Ji,
Jeroen van Tilborg, Carl Schroeder, Eric Esarey, Cameron GeddesEngineering Division:Qiang DuEnergy Technologies Area:Vassilia Zorba, Costas GrigoropoulosComputing Sciences Area:Juliane Mueller, Wibe de Jong

External Collaborators:

Univ. of Michigan:	Almantas Galvanauskas, Lauren Cooper, Alexander Rainville, Mathew Whittlesey, et al.
LLNL:	Michael Messerly, Thomas Spinka, Leily Kiani, David Feng, et al.
Colorado State Univ.:	Jorge Rocca
Varian:	James Clayton
Coherent:	Joseph Henrich, Nigel Gallaher
Optical Engines:	Don Sipes

• Funding support:

DOE HEP, DOE ARDAP, Moore Foundation

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA *
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

* kBELLA is a \$100M-class laser facility (3J, 1kHz, 3kW) that will secure US leadership in advanced particle accelerators and enable applications in physics, materials, security and biomedical science.

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Advanced high-power laser technologies needed for broad accelerator applications

DOE Accelerator Stewardship Ultrafast Laser Technology Program target laser parameters

	Type I	Type II	Type III	Type IV
Wavelength (µm)	1.5-2.0	0.8-2.0	2.0-5.0	2.0-10.0
Pulse Energy	3 µJ	3 J	0.03-1 J	300 J
Pulse Length (fs)	300	30-100	50	100-500
Repetition Rate	1-1000 MHz	1 kHz	100 kHz	100 Hz
Average Power (kW)	Up to 3	3	3 and up	30
Energy Stability	<1%	<0.1%	<1%	<1%
Beam Quality	M ² <1.1	Strehl>0.95	M ² <1.1	M ² <1.1
Wall-plug Efficiency	>30%	>20%	>20%	>20%
				8

Ultrafast lasers for accelerator applications:

- Type I: directly laser-driven accelerators-on-a-chip
- Type II: laser plasma acceleration (LPA), Compton backscattering (x-ray)
- Type III: high rep-rate radiation, high-harmonic generation (HHG)
- Type IV: plasma-based sources of protons, ions, neutrons

Driver laser specs for >kHz plasma accelerators are most demanding

ACCELERATOR TECHNOLOGY & ATAP

DOE Accelerator Stewardship Ultrafast Laser Technology Program target laser parameters

	Type I	Type II	Type III	Type IV
Wavelength (µm)	1.5-2.0	0.8-2.0	2.0-5.0	2.0-10.0
Pulse Energy	3 µJ	3 J	0.03-1 J	300 J
Pulse Length (fs)	300	30-100	50	100-500
Repetition Rate	1-1000 MHz	1 kHz	100 kHz	100 Hz
Average Power (kW)	Up to 3	3	3 and up	30
Energy Stability	<1%	<0.1%	<1%	<1%
Beam Quality	M ² <1.1	Strehl>0.95	M*=1.1	M ² <1.1
Wall-plug Efficiency	>30%	>20%	>20%	>20%
	4			

Ultrafast lasers for accelerator applications:

- Type I: directly laser-driven accelerators-on-a-chip
- Type II: laser plasma acceleration (LPA), Compton backscattering (x-ray)
- Type III: high rep-rate radiation, high-harmonic generation (HHG)

BERKELEY LAB

• Type IV: plasma-based sources of protons, ions, neutrons

Type II laser specs extended

Laser parameter	k-BELLA	Hi rep-rate driver	Collider driver	
Energy	3J	3J	6J	
Pulse duration	30fs	30fs	100fs	
Rep-rate	1kHz	10kHz	50kHz	
Average power	3kW	30kW	300kW	

Office of

Science

LPA rep-rates need to increase beyond kHz for applications

Rapid progress positions LPAs as next generation compact accelerators

Order of magnitude improvement in LPA performance at kHz rates

- Fluctuations are faster than current LPA repetition rates (~Hz)
- Demonstrated improvements at mJ/kHz (via active feedback)¹

kHz-Joule class will enable precision GeV-class LPA

LPA performance, stability and control, precision staging/injection

Enables photon sources at kHz

Accelerator applications require >kHz rates

Key step to 50 kHz class colliders

laser pointing fluctuations typically <100 Hz¹

[1] F. Isono et al. High Power Laser Science & Engineering, 9, e10 (2021)

>kHz LPAs need new driver laser to reach power and efficiency

Laser parameter	k-BELLA	Hi rep-rate driver	Collider driver
Energy	3J	3J	6J
Pulse duration	30fs	30fs	100fs
Rep-rate	1kHz	10kHz	50kHz
Average power	3kW	30kW	300kW

- New requirements on driver lasers for >kHz LPAs
- High wall-plug efficiency (~10s%)
- High average power capability
- Limitation of current Ti:sapphire lasers
- Low wall-plug efficiency & Limited thermal handling
- Need new laser technology beyond kHz!
- Promising: Fiber laser, Tm:YLF bulk, Yb:YAG bulk

- L. Kiani, T. Zhou, et al. "High average power ultrafast laser technologies for driving future advanced accelerators", Journal of Instrumentation (2023)

Background

- Accelerator applications
- Fiber laser approach & Current LBNL effort
- Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Ultrafast fiber lasers can provide high power & energy at high efficiency

- Fiber laser: most efficient high power laser & industrial maturity
- Chirped-pulse amplification & combining enables high energy
- · Coherent combined fiber lasers rapidly developing worldwide

Chirped-pulse amplification, 2018 Nobel Prize (Mourou & Strickland)

amplification, Example: 61-fiber-laser ze (Mourou & combining system (1kW, >250fs) Fsaifes et al. *Opt. Express* 28, 20152 (2020)

32mJ, 158fs, 640W combining 16 fibers 10mJ, 120fs, 1kW combining 16 fibers

H. Stark et al. Optics Letters 48, 3007 (2023) Stark et al. *Optics Letters* 46, 969 (2021)

LBNL/UM/LLNL research breakthroughs enabled fiber laser combination path towards >kHz LPA drivers

Laser parameter	Funded, ongoing	k-BELLA	Hi rep-rate driver	Collider driver
Energy	0.2 J	3J	3J	6J
Pulse duration	30fs	30fs	30fs	100fs
Rep-rate	5 kHz	1kHz	10kHz	50kHz
Average power	1kW	3kW	30kW	300kW

Funded by DOE Accelerator Stewardship, DOE ECRP, Moore Foundation 10

Multidimensional fiber laser combination is a path to drive future LPAs

Background

- Accelerator applications
- Fiber laser approach & Current LBNL effort
- Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

LBNL Multi-Area LDRD: Vassilia Zorba (ETA), Tong Zhou (PSA), Wibe de Jong (CSA)

Self-Driving Labs for Accelerated Photonics Materials Discovery & Scale-up

Approach: Close the materials discovery feedback loop

- Scale-up discovery & manufacture speed and volume with new lasers
- Speed: High repetition rate lasers
 - Implement switchable repetition rates and pulse energies: Enable fast switching of operation modes
- Volume: High pulse energy lasers
 - Develop beam mode shaping methods to improve homogeneity and quality of the fabricated surface features

- (1) Enable a new area of laser processing, materials discovery, transformative manufacturing.
- (2) Extend strategic high average & peak power laser development towards broad application capabilities.

Feasibility of fiber lasers for laser fusion

Challenge/Opportunity

- Fusion laser driver needs high wall-plug efficiency and high-power capability
- Fiber lasers are the most efficient high power laser demonstrated so far
- Combined fiber laser arrays are scalable in pulse energy and average power

Commercial (IPG)100kW CW fiber laser with 35% WPE integrating ~10² channels

Approach

- Incoherent/Coherent combining of many fiber laser channels to reach the pulse energies needed for inertial fusion/fast ignition
- Advances in specialty large-core fiber amplifiers could enable ~100mJ per fiber (for fast ignition), and ~1J per multicore fiber (for inertial fusion)
- Laser drivers would require 10⁴ 10⁵ parallel channels, which could be feasible due to fiber compatibility with monolithic integration

Example of fast ignition driver architecture:

Timeliness

Why now?

- Commercial high power multi-modular fiber laser systems
- Recent advances in high energy generation with specialty large core fiber technologies
- Recent advances in coherent combining of ultrashort pulse fiber lasers

R&D goals (e.g. 5 years):

- Large core specialty fiber based integrated amplifier array technology with 0.1-1J per channel
- Pulsed pumping for 30-40% wall-plug efficiency at low rep-rate (~10Hz)
- Specifically for fast ignition: Coherent control of large numbers of fiber channels, and high fidelity temporal pulse stacking

Impact

A pathway to efficient fusion driver laser technology for future IFE plants

- A. Galvanauskas, T. Zhou, et al. White paper to *IFE Science* & *Technology Community Strategic Planning Workshop*, 2022

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Many short-pulse laser beams can be added using two diffractive elements

- Many CW lasers can be combined with >90% efficiency on one diffractive optical element (DOE)
- Short pulses (broadband) don't combine well due to pulse front tilt (angular dispersion)
- Adding a compensation DOE (DOE 1) solves the problem for short pulses

Proof-of-principle: 4 fiber-amplified, 120fs pulse beams are combined in a 1×4 array with close to theoretical limit efficiency

T. Zhou, T. Sano, R. Wilcox, Optics Letters 42, 4422 (2017).

2-D combination is essential for combining large beam arrays

• Example: 8 fiber-amplified, 120-fs beams combined in a 3×3 array

- DOEs manufactured using a scalable digitized surface-writing process
- Each input beam produces a square 8–beam array after DOE2, all these arrays partially overlap to form a 5×5 output array
- All input beams combined into one beam when pulse delay & phase matched

Experiment demonstration: 2-D diffractive combination of 8 ultrashort-pulse beams

- Combined/compressed pulse preserves 120fs transform limited pulse width
- 89.5% of output power is in central beam
 - Close to limit: DOE2 splitting efficiency is measured to be 90.7%
 - Limited by the discontinuous-surface DOE2

) Free running (b) Phase controlle Output beam array from a camera

Tong Zhou, et al. Opt. Lett. 43, 3269-3272 (2018)

81-beam diffractive combining demo with free space CW laser

ACCELERATOR TECHNOLOGY & ATAP

81 input beams 9 by 9 DOE 17 by 17 output

BERKELEY LAB

.....

US DEPARTMENT OF Office of Science

19

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Multiple optical cavities can be cascaded to stack many pulses

First demonstration of cascaded coherent pulse stacking

Multiple cavity-cascades can be multiplexed to stack large numbers of pulses

ACCELERATOR TECHNOLOGY & ATAP

BERKELEY LAB

U.S. DEPARTMENT OF

Office of

Science

23

High-energy spatial & temporal combination of ultrafast fiber lasers have been demonstrated

30

Spatial & temporal combination for power/energy scaling

- 4 beams combined, stacked & compressed to ~25mJ with ~7mJ/fiber
 - A. Rainville et al, CLEO 2023, paper SF3H.6
 - M. Whittlesey et al, SPIE Photonics West 2022, paper 11981-27

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Gain narrowing effect limits short-pulse durations of current fiber lasers; Spectral combining multiple fiber amplifier channels can solve the problem

ACCELERATOR TECHNOLOGY & ATA

Pulse duration from high-energy Yb fiber amplifiers limited to >300 fs (without compensation):

- Gain narrowing and saturation
- High-order dispersions

Simulated seed and amplified (10-40 dB) spectra from an Yb fiber amplifier

(from rp-photonics)

Science

First demonstration of spectral combining of fiber lasers at 1um wavelength in 2013

Wei-zung Chang, Tong Zhou, et al., Opt. Express 21, 3897-3910 (2013)

BERKELEY LAB

26

Coherent spectral combining results

Measured spectrum of the individual-

channel and combined signals:

Wei-zung Chang, Tong Zhou, et al., Opt. Express 21, 3897-3910 (2013)

Normalized autocorrelation traces for the individual-channel and combined signals:

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Coherent Temporal Stacking of tens-of-fs Laser Pulses

Coherent pulse stacking is the key enabler of the fiber laser combination approach for >kHz LPAs

- 100x reduction in fiber array size
- Only been demonstrated with >300fs
- (needed for LPA drivers)

- Pulse stacking uses optical cavities \rightarrow Broadband pulses accrue different dispersions upon stacking \rightarrow Dispersions affect pulse stacking efficiency
- Simulation shows: With off-the-shelf, low-dispersion mirrors, efficient stacking of 81 pulses can be achieved with pulse lengths down to 30fs

Setup of Broadband Stacking

4 Cavity Broadband Stacking Results

• Experiment

- <50fs bandwidth pulses were stacked in a 4-cavity, 9-pulse stacking setup
- High efficiency stacking was demonstrated with 30:1 pre-pulse contrast

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Prior art on generating short pulses from Yb:fiber systems & Challenges

Shortest pulse from a single fiber amplifier channel

- 130fs, 250µJ
- Pulse shaping (intensity & phase)

L. Lavenu, et al. Opt. Express 25, 7530-7537 (2017).

Shortest pulse from spectrally combined Yb:fiber systems

- ~100fs, 10µJ, combining 2 channels ¹
- One pulse shaper (phase) before splitting

But LPA drivers require pulse durations as short as 30fs

- Critical to demo spectral combining to 30-50 fs
- Need ~100nm bandwidth, while current high-resolution pulse shapers only cover <50nm

[1] F. Guichard, et al. Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications (2016).

Demonstration of record short pulse from Yb:fiber combination systems paved way to high-energy multi-dimensionally combined systems

Demonstrated record short pulse (42fs) from Yb:fiber combination systems

- Combining 3 spectral bands over 80nm, covering Yb3+ gain window
- Coherently-spectrally synthesize pulse shaping achieves full-band spectral intensity/phase control

Broadband spectral combining of three pulse-shaped fiber amplifiers with 42fs compressed pulse duration "Top Downloads"

CLEXPRESS

Mrl. 31. No. 8/10 Apr 2020 (Optice Express 12717

SIYUN CHEN, TONG ZHOU, 'QIANG DU, O DAN WANG, ANTONIO GILARDI, O JEAN-LUC VAY, DERUN LI, JEROEN VAN TILBORG, O CARL SCHROEDER, ERIC ESAREY, RUSSELL WILCOX, AND CAMERON GEDDES

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Fibers/Amplifiers are the backbone of high energy fiber lasers

Significant progress in developing and manufacturing fiber and amp modules

- Active fiber in progress ٠
- integrated fiber amplifier module (LBNL/UM/Optical Engines)

٠

Amp module prototype in progress ٠

High power fiber amplifier to be monolithically modularized (currently free-space coupling in and out of fiber)

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining

- Fiber/Amplifier development
- 200mJ demonstrator; Outlook
- Conclusion

BERKELEY LAB

US DEPARTMENT OF Office of Science

200mJ demonstrator system under construction at LBNL

Fiber-laser accelerator driver development roadmap: from short-term R&D to long-term facilities

- Short-term goal (3-5 yrs): Achieve technical readiness for building fiber laser driver facilities
 - o Laser specs: 0.2J, 30-50fs, 5kHz, 1kW
 - Solid circles in the left roadmap are short-term R&D milestones (funded)
- Mid-term goal (<10 yrs): Build and operate accelerator facilities driven by fiber lasers, e.g. kBELLA
 - o Laser specs: 3J, 30fs, 40kHz, 120kW
 - Stepping stone towards collider drivers

engineering Experts

- Long-term goal (>10 yrs): Build and operate collider driver facilities
 - o Laser specs: 5J, 30/100fs, 40kHz, 200kW

	Stewardship	& Moore	300MeV	1GeV	drivers
Project Type	R&D (funded)	R&D (funded)	Facility	Facility	Facility
Energy	0.1 J	0.2 J	0.5 J	3 J	5 J
Duration	100 fs	30-50 fs	15 fs	30 fsOlleo of	30/100 fs

System

DOF

- Background
 - Accelerator applications
 - Fiber laser approach & Current LBNL effort
 - Broad applications
- Fiber laser combination approach
 - Spatial beam combining
 - Temporal pulse stacking
 - Spectral combining
- Current LBNL effort: Stepping-stone laser towards kBELLA
 - Demo: short-pulse temporal stacking
 - Demo: short-pulse spectral combining
 - Fiber/Amplifier development
 - 200mJ demonstrator; Outlook
- Conclusion

Conclusion

- Advanced high-power laser technologies are needed for broad accelerator applications; Fiber laser combination approach is promising for driving >kHz plasma accelerators and broad applications.
- Our fiber laser combination approach integrates novel laser methods:
 - Diffractive ultrashort-pulse beam combining (in space)
 - Coherent pulse stacking (in time)
 - Coherent spectral combining (in spectrum)
- Current grants will build a 200mJ/30fs/1kW fiber laser, a stepping stone for kBELLA facility and beyond
 - We demonstrated coherent pulse stacking of <50fs pulses (>6x shorter than prior art)
 - We demonstrated spectral combining to 42fs pulses (>2x shorter than prior art)
 - We designed the key fibers/amplifiers (being fabricated)
 - o The 200mJ demonstrator will demo P/E scalability, pulse duration, fiber amp modules, feedback control
- We have a fiber laser development roadmap: from short-term R&D to long-term accelerator facilities.

Thank you!

Look forward to potential collaborations!

- R&D
- Accelerator Science and Engineering Traineeship (ASET) program
- DOE Office of Science Graduate Student Research (SCGSR) program
- and more...

