

Ion Instabilities in Low Emittance Storage Rings

J. Calvey

M. Borland, T. Clute, J. Dooling, L. Emery, J. Gagliano, J. Hoyt, P. Kallakuri Advanced Photon Source Argonne National Laboratory

FRIB Accelerator Physics and Engineering Seminar February 10th, 2023

Work supported by DOE Contract No. DE-AC02-06CH11357

Outline

- Introduction
- Coherent instability simulations
- Compensated gap scheme for APS-U
- Modeling incoherent effects with the IONEFFECTS element
 - Features and capabilities
 - Effects: multiple ionization, impedance, charge variation
 - Simulations for the present APS
- Gas injection experiment
 - Design and operation
 - Results for different bunch patterns and injection locations
 - Simulations with different ion-beam kick methods
- APS-U simulations with IONEFFECTS

Introduction

- Ion trapping occurs when a negatively charged beam ionizes residual gas inside the vacuum chamber. The resulting ions can become trapped in the beam potential.
- Trapped ions can couple to the beam motion, leading to a coherent (usually vertical) instability.
 - The strength of the instability is proportional to the average beam current, and inversely proportional to the beam size¹.
 - Fast initial growth rate, slows as instability starts to shake out the ions.
 - Amplitude tends to saturate around one beam sigma.
- Trapped ions can also cause incoherent effects, such as emittance growth and tune spread. These are generally less well understood than coherent instability.

History

- "Conventional" ion instability- ions build up over many turns
 - Observed at CERN ISR¹, SPS², CERN antiproton accumulator³, Fermilab antiproton accumulator⁴, CESR⁵
 - Mitigations include clearing electrodes, bunch shaking, and clearing gaps⁶
- "Fast" ion instability^{7,8}- builds up over single bunch train
 - Studied with gas injection experiments^{9,10,11,12}
 - Observed at SOLEIL¹³, SPEAR3¹⁴, PAL¹⁵, KEK-B¹⁶
 - Slower growth rate than conventional instability, can be controlled by feedback
- Renewed interest for next generation light sources
 - High current, low emittance \rightarrow fast growth rate
 - Very sensitive to instability or emittance dilution
 - Observed at ESRF-EBS: coupled bunch instability

correlated with vacuum bursts

[1] H.G. Hereward, CERN-71-15 (1971). [2] Y. Baconier, G. Brianty, CERN/SPS/80-2 (DI), 1980. [3] H. Pires, PAC 1989, pp. 800-802. [4] S. Werkema et al., PAC 1993, pp. 3573-3575. [5] D. Sagan and A. Temnykh, NIMA 344, pp. 459-469 (1994). [6] D. Villevald & S. Heifets, SLAC-TN-06-032 (1993). [7] T.O. Raubenheimer. F. Zimmermann, PRE 52, 5487 (1995). [8] G.V. Stupakov et al., PRE 52, 5499 (1995). [9] J. Byrd et al., PRL 79, No. 1 (1997). [10] M. Kwon et al., PRE 57, 6016 (1998). [11] J. C. Lee et al., PAC 1999, pp 1605-1607 [12] A. Chatterjee et al., IPAC 2014, pp 1638-1640. [13] R. Nagaoka et al., IPAC10, pp. 1985-1987 (2010). [14] L. Wang et al., PRST-AB 16, 104402 (2013). [15] J. Huang et al., PRL 81, 4388 (1998). [16] K. Ohmi, PRE 55, No. 6,7550 (1997).

Ion trapping criterion

- Trapping criterion is given by the simple equation¹
- lons with mass number larger than the "critical mass" • will be trapped; lighter ions will not.
 - $A_{crit} \equiv max(A_x, A_v)$
 - Very high beam density will over-focus the ions, preventing long term trapping
- Because the beam size will vary along the ring, the critical mass will also vary
- Basic parameters for APS-U operating modes • are shown in table (assuming full coupling)
- No trapping is expected for 48 bunch mode •
 - $(A_{crit} > 700 \text{ for entire ring})$
 - Next slides assume 324 bunches, where trapping is expected in the multiplets

$$A_{x,y} = \frac{N_e r_p S_b Q}{2\sigma_{x,y}(\sigma_x + \sigma_y)} \begin{array}{l} N_e \equiv \text{bunch population} \\ r_p \equiv 1.5 \times 10^{-18} \text{ m} \\ S_b \equiv \text{bunch spacing} \\ \sigma_x, \sigma_y \equiv \text{beam size} \end{array}$$

size

Coherent instability simulations

- We use an ion instability code developed at SLAC¹
 - Ions are modeled using many macroparticles
 - Bunch is a single macroparticle (only centroid motion allowed) with assumed Gaussian field
 - Sometimes called "weak-strong" code
 - Benchmarked with ion-induced tune shift measurements in APS Particle Accumulator Ring²
- Incorporates realistic pressure profiles generated by CERN codes SynRad+³ and MolFlow+⁴
- Plots compare APS-U results for 100 A-hr (early operation) and 1000 A-hr (~1 year) pressure profiles
- Both show very fast initial growth, saturation at around 10% beam sigma (as beam motion shakes out ions)
- 100 A-hr case shows higher instability growth rate

[1] L. Wang et al. PRSTAB 14-084401 (2011).
 [2] J. Calvey et al., Proc. NAPAC16, THPOA14. (2016)
 [3] R. Kersevan. Proc. PAC 1993, p. 3848.
 [4] M. Ady and R. Kersevan. Proc. IPAC 2014, p. 2348.

6

Compensated gaps can control the ion instability¹

- Gaps between bunch trains will introduce time for ions to escape^{2,3}
- We minimize transients in the RF system by distributing the missing charge to the bunches adjacent to the gaps ("guard bunches")
 - High charge bunches before the gap will also provide a stronger kick to the ions
 - Simulations show modest impact on bunch distribution and Touschek lifetime, no impact on MBI growth rates
- Ion simulations show that even 2 gaps of 2 bunches each reduces trapping and instability, 12 gaps eliminates it (100 A-hr case)

Modeling incoherent ion effects

- Emittance growth is possible, even if coherent instability is damped
- Potentially dangerous scenario: emittance blowup \rightarrow more trapping \rightarrow more blowup
- Need a "strong-strong" code: model both beam and ions with macroparticles^{1,2,3}
 - Very computationally intensive
- Our approach: incorporate an IONEFFECTS element into particle tracking code elegant⁴
 - Massively parallelized: ~100x faster with ~200 cores
 - Beam is already modeled with macroparticles
 - Study interaction of ion effects with other elements, e.g. feedback⁵, impedance
- Inputs: location of ion elements, pressure profiles, ion properties, arbitrary bunch pattern
- An IONEFFECTS element simulates ion generation, ion motion between bunches, beam/ion kicks
 - Kick from beam to ions derived from Bassetti- Erskine formula⁶ (assumes Gaussian beam)
 - Kick from ions to beam can also use this method, though other options exist
- Includes multiple ionization⁷: Ions have a chance of being multiply ionized or dissociating and becoming untrapped (e.g. CO₂⁺ → CO₂²⁺, CO₂⁺ → C⁺ + O₂, etc.)

 [1] K. Ohmi et al., KEK report 96-73 (1996).
 [5]

 [2] G. Rumolo and D. Schulte, EPAC08, pp. 655-657 (2008).
 [6]

 [3] C. Li et al., PRAB 23, 074401 (2020).
 [7]

 [4] M. Borland. ANL/APS LS-287, (2000).
 [7]

- [5] R. Nagaoka et al., IPAC 2011, pp. 712-714 (2011).
- [6] M. Bassetti, G. Erskine, CERN ISR TH/80-06 (1980).
- [7] P.F. Tavares, Particle Accelerators Vol. 43, pp. 107-131 (1993).

Example output: ions

- Present APS: 324 bunches, 100 mA, 7 GeV, 0.5 nTorr
- Ion density can be broken down by interaction point (IP) or ion species
 - IP6 has higher Acrit than IP2
 - H_{2}^{+} not trapped, CO_{2}^{+} dominates
- Ion histogram shows peaked distribution (expected¹)

Example output: beam

- Instability amplitude saturates ~0.9 sigma
- Beam spectrum shows peaks in lower vertical betatron sidebands near characteristic ion frequency¹ (~7 MHz for CO₂)

[1] L. Wang et al. PRSTAB 14-084401 (2011).

$$\omega_{i,y} \approx c \left(\frac{4N_e r_p Q}{3AS_b(\sigma_x + \sigma_y)\sigma_y} \right)^{1/2}$$

10

Simulations for the present APS

- Motivations:
 - Understand why ion instability is not observed in present APS, as predicted by theory and weak-strong simulations
 - Help validate IONEFFECTS code
- 324 bunches, 100 mA, 7 GeV, 0.5 nTorr
- Adding important effects one at a time
 - Black: baseline simulation
 - Red: include multiple ionization
 - Green: include transverse impedance (head-tail damping)
 - Blue: include charge variation: ±10% rms⁺
- Together, reduce amplitude by factor of 3

Charge variation

- Modify bunch charge following Gaussian distribution with given rms
- Significant effect on ion density and instability amplitude, especially for 15+% variation
- Uneven focusing modifies trapping criteria
- Suggests possible mitigation?

Using measured fill pattern

- Use measured bunch pattern during normal operations as input
- Very uneven due to "fill-on-fill" injection
- FFT of waveform shows peak at ~31 MHz (bunch rep rate 88 MHz)

Agreement with measurement in normal conditions

- Instability observed as emittance growth and/or peaks in lower vertical betatron sidebands near characteristic ion frequency
- Ion peaks observed in measurement, simulation shows good agreement
 - First peak ~7 MHz
 (ion frequency for CO₂)
 - 2nd peak due to uneven
 bunch pattern at 7+31 = 38MHz
 (amplitude modulation)
- Simulation shows negligible (~0.3%) increase in observed vertical emittance (including oscillation)

$$\omega_{i,y} \approx c \left(\frac{4N_e r_p Q}{3AS_b(\sigma_x + \sigma_y)\sigma_y} \right)^{1/2}$$

Gas injection study¹

- Studies with artificially increased gas pressure have been performed at several machines^{2,3,4,5}. Typically H₂ or a noble gas is filled around the ring.
- We decided to try a localized pressure bump:
 - Know beta functions at injection point, can vary them
 - Precisely know and control pressure
 - Use N₂ gas without contaminating whole ring
 - Use one of two pre-calibrated leaks- ~100 or ~900 nTorr
 - Pressure bump mostly confined to ~6-10 m section between ion pumps
- Measurements:
 - Beam spectrum (spectrum analyzer)
 - Beam emittance, lifetime (standard monitoring)
 - Unstable modes (Dimtel feedback system)⁶
 - Bremsstrahlung dose (calorimeter)⁷
- Installed at 2 locations: Sector 25 (S25) and Sector 35 (S35)

J. Calvey et al., IBIC2020, pp. 258-262 (2020).
 J. Byrd et al., PRL 79, No. 1 (1997).
 M. Kwon et al., PRE 57, 6016 (1998).
 J. C. Lee et al., PAC 1999, pp 1605-1607
 A. Chatterjee et al., IPAC 2014, pp 1638-1640.
 S. Heifets and D. Teytelman, PRST-AB 8, 064402 (2005).
 J. Dooling et al., MOPAB044, IPAC21.

INSTALLATION CONFIGURATION

WITH 2 CALIBRATED VARIABLE LEAKS

J. Hoyt, T. Clute

Currently installed components 2x SMC Digital Pressure Gauge New equipment 3 Vacuum Nitrogen Pump 15 PSI Relief Vent 1/4" Braided line and SST Tubing Mezzanine _ _ _ _ : Tunnel **Beam Direction** 4 Convection Vent Gauge 6 5 СС Gate Valve Gate Valve Gauge Small Variable Large Variable Leak Leak CC & Convection Gauge Gate Valve 7 Saturated NEG Sector 25 S5: NEG Saturated NEG Spool Sector 26 S1: NEG Gate Valve 45 Gate Valve IP 220 IP 220 IP 220 IP

UCHICAGO ARGONNELLE ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory U.S. Department of Energy laboratory U.S. Department of Energy laboratory

INSTALLATION CONFIGURATION

WITH 2 CALIBRATED VARIABLE LEAKS

J. Hoyt, T. Clute

Currently installed components

Example measurement: train comparison (S25)

- 6 GeV, 100 mA, 900 nTorr bump
- Increasing number of trains with gaps
- From theory, expected ion frequency for $N_2 \sim 10 \text{ MHz}$
- Gaps are 12 bunches long- should be enough to clear out N₂ ions
- Large emittance blowup in both planes
 - Results in lower ion frequency (~4 MHz with no gaps)
- As more trains/gaps are used, vertical amplitude decreases, moves to higher frequency
 - Result of beam size deceasing
 - With 9 trains, vertical spectrum peak back at 10 MHz

Comparison of S25 and S35

- Lattice functions very different at two locations
- Compare two parameters:
 - Critical mass¹: lower $A_{crit} \rightarrow$ more trapping
 - Vertical growth time parameter: lower τ_v → faster initial growth
- S35 has lower $A_{_{crit}}$ and $\tau_{_y} \rightarrow$ stronger instability
- S25: two parameters highly correlated
- S35: anti-correlated: locations with the most trapping have the slowest initial growth

$$A_{x,y} = \frac{N_e r_p S_b Q}{2\sigma_{x,y}(\sigma_x + \sigma_y)}$$

$$\tau_y \equiv 10^{10} \sigma_y(\sigma_x + \sigma_y) / \beta_y$$

[1] H.G. Hereward, CERN 71-15 (1971).

Train gap studies

- Measure instability for four bunch patterns:
 - 1 train, no gaps (324 bunches)
 - 12bg: 4 trains, 12 bunch gaps
 - 24bg: 4 trains, 24 bunch gap
 - 12bg 6gb: 4 trains, 12 bunch gap,
 6 double-charge guard bunches¹
- Bunch charge adjusted to give
 ~80 mA total current
- Took data for 900 and 100 nTorr bump
- Done for S25 and S35

[1] J. Calvey and M. Borland, PRAB 22 p. 114403 (2019).

Quantity	Value	
Beam energy	6 GeV	
Horizontal, vertical emittance	1.83 nm, 24 pm	
Revolution time	3.68 µs	
Beam current	~80 mA	
Bunches (no gaps)	gaps) 324	
Bunch spacing	11 ns	
horizontal, vertical chromaticity	~6,~3 ₂₀	

Train gap results: 900 nTorr, S25

- Horizontal instability suppressed with gaps
- Vertical: with gaps, ion peak moves to higher frequency, reduced amplitude
- Guard bunches help clear ions
- Dimtel data shows unstable modes over 4000 turns
 - Modal amplitudes not constant

Bunch pattern	ε _x (nm)	ε _y (nm)
No gap	3.6	0.124
12bg	2.06	0.049
12bg 6gb	2.05	0.031
24bg	2.09	0.027

Train gap results: 900 nTorr, S35

(dBm

- No horizontal instability
- Huge vertical blowup with no gaps
- Gaps effective- reduce blowup, move ion frequency higher
- Guard bunches help clear ions
- Vertical emittance and instability amplitude >> S25
- Wild mode instability in Dimtel data

22

Bunch by bunch RMS motion (900 nTorr, S35)

- Measured by Dimtel feedback system¹
- Buildup along bunch trains- fast ion instability²
- First few bunches higher than 100 following ones.
 - Train gaps are effective.

Argonne

Bunch#

Bunch#

Transverse feedback (900 nTorr, no gaps, S35)

- Dimtel system is used to measure and suppress transverse instabilities.
- Vertical feedback extremely effective, but leads to horizontal instability
 - Emittance blowup also suppressed
- Vertical instability damped \rightarrow more ion trapping \rightarrow horizontal instability
- With feedback on in both planes, still have (smaller) horizontal instability

Grow-damp measurements (Dimtel system)

- Feedback disabled at 0 ms, re-enabled at 20 ms
- Study instability on a mode-by-mode basis
- Faster growing modes saturate at a lower amplitude
- Complex mode behavior after initial saturation

Mode amplitudes - Grow damp measurements @900 nTorr

Beta function study (900 nTorr, S35)

- Goal: study effect of varying beta function on ion instability
- Three lattices designed with different vertical beta function at gas injection point
- Saturation level about the same for each lattice, but mode behavior is different

Characterizing growth and saturation

- Initial growth and saturation can be modeled by logistic function
- Saturation level given by $\boldsymbol{\alpha}$
- Time of inflection point: $t_i \equiv -\ln(\delta)/r$

$$y(t) = \frac{\alpha}{(1+e^{-rt})^{1/\delta}}$$

- Higher amplitude modes have slower growth time
- Recall anti-correlation between growth rate and trapping in S35
- Modes with the highest amplitude are driven by locations with the most ion trapping, rather than the fastest initial growth.

mode	freq (MHz)	α	<i>t_i</i> (ms)
301	6.2	24.6	3.9
308	4.3	34.4	4.1
317	1.9	98.6	11.1
320	1.1	148.5	17.0

Bi-Gaussian beam kick¹

- Initial simulations of gas injection experiment did not show much blowup
- So far, Gaussian distribution is assumed for both beam and ion kicks
 - Bad assumption for ions
 - But a bi-Gaussian fit does much better
- Fit x and y distributions separately, using two Gaussians each
 - rho(x,y) = [G1(x) + G2(x)] * [G3(y) + G4(y)]
- Options for tri-Gaussian and bi/tri-Lorentzian have also been added

Bi-Gaussian results show beam size blowup with gas injection $\frac{1}{3}$

- 900 nTorr, 324 bunches, no gap, 100 mA
- Large beam size blowup
 - Leads to reduced ion frequency
 - More consistent with measurement

Gas injection simulations

- Simulations of S35 train gap study, done with bi-Gaussian kick method
- Clearing effect from train gaps clearly seen
- Compare effective vertical emittance (beam size and rms motion added in quadrature)
 - Qualitative agreement- train gaps are effective
 - Simulation overestimates instability amplitude
- Beam spectra also show qualitative agreement

Growth of unstable modes

- Growth of modes in simulation mirrors measurement
- Most unstable ~320
- Fastest growing modes saturates at lower value
- "Sharing" of instability between modes

Poisson Solver

- **Developing a Poisson** solver for elegant
 - >Calculate ion-beam kick for any ion distribution
 - **Decided on FFT** based method using FFTW library¹
 - Fast, can be parallelized
- Plots show ion density and calculated kick
 - Top: first bunch

Argonne 🧲

Bottom: after first turn

APS-U simulations

- 200 mA, 6 GeV, 100 A-hr pressure profile
- Bi-Gaussian kick method
- Simulate effect of compensated gaps
 - 2 bunch gaps with 1 guard bunch
- No gap case shows larger amplitude, beam size blowup → more trapping → more instability
- Compensated gap scheme still effective

Conclusions

- Ion instability is a major concern APS-U 324 bunch mode.
- We plan to mitigate coherent instability with a compensated gap scheme.
- **Developed** IONEFFECTS code to model incoherent effects.
 - Shows good agreement with present APS measurements when multiple ionization, transverse impedance, and charge variation are included.
- Gas injection experiment was installed and operated at two locations in the APS.
 - Observe both coherent instability and emittance blowup.
 - Train gaps are an effective at mitigation. Guard bunches help with the ion clearing.
 - Dimtel transverse feedback is very effective.
 - Grow-damp measurements allow for studying the instability on a mode-by-mode basis.
- IONEFFECTS simulations using a bi-Gaussian kick method show qualitative agreement with the gas injection measurements.
- Work is underway to implement a Poisson solver in the code, and to perform simulations using a model of the transverse feedback.
- APS-U simulations show potential for runaway emittance blowup.
 - Compensated gap scheme should still be effective.

Thanks for your attention!

• Questions?

Backup slides

Computation of pressure profile (J. Carter)

- Since trapping is localized, we want to know the local pressure around the ring
- Photon flux distribution calculated by SynRad+¹⁰
 - Includes scattering of photons off vacuum chamber elements
- Pressure profiles calculated by MolFlow+¹¹
 - Inputs: photon flux from Synrad+, photon stimulated desorption, pumping elements

Parallelization

- Parallelized using MPI library
- For standard simulation, relative to serial:
 - Almost 10x faster with 12 cores
 - ~100x faster with ~200 cores

Train gaps: 900 nTorr, lattice with high β_v in S25

- Nothing in horizontal
- Huge vertical blowup \rightarrow very low ion frequency
- 12 bunch gap not effective
- 12bg 6gb shows lower emittance than 24bg, but stronger spectrum

Comparing S25 and S35, 900 nTorr

- Top: measured emittance
- Bottom: beam spectrum (lower vertical betatron sidebands)
- S35 has much larger vertical blowup and sideband amplitude than S25
- S25 no gap case also has horizontal instability
- Train gaps reduce blowup and instability amplitude, increase ion frequency
- 12bg 6gb performs better than 12bg, about the same as 24bg

pattern	S25	S35	S25	S35
	ϵ_x (nm)	ϵ_x (nm)	ϵ_y (nm)	ϵ_y (nm)
No gap	3.6	1.98	0.124	1.55
12bg	2.06	1.83	0.049	0.188
12bg 6gb	2.05	1.78	0.031	0.043
24bg	2.09	1.77	0.027	0.051

Results: 40m lattice, no gaps

- Very strong vertical instability
- Vertical feedback still very effective, but leads to horizontal instability
- Can't completely suppress both planes at once

High BetaY lattice

900 nTorr, No bunch gaps

Stabilizing X-plane by using

max shift gain effected

Both ON

Increased X shift gain

50

Frequency (kHz)

100

Y-plane stability.

20

-20

-40

0

留

100

Results: 11m lattice, no gaps

- Very similar to 40m case (!)
- Can't suppress both planes at once •

50

50

Frequency (kHz)

Frequency (kHz)

100

100

40

20

C

-20

-40

0

問

Both ON

50

Frequency (kHz)

100

Y FB ON

Both ON

0

0

0

Simulations for S35 gas injection: Gaussian kick method

- Underestimated instability for S25 experiment
- Much stronger instability predicted than for S25
- Beam size blowup predicted even for low pressure case
- NB- Instability in units of original beam sigma

Simulations for S35 gas injection: bi-Gaussian kick

