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The Spallation Neutron Source Accelerator

Accumulator Ring:
compress 1-msec long pulse

End: to ~700 nsec .
Front-End: 1 GeV LINAC )
Produce a 1-msec long, \ <1 usec
chopped, H-beam \
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| | | = 1.4 MW proton beam power
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Part |: Foll history, development, success at SNS
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High power accelerators get around Liousville’s Theorem

Measured bunches in the ring
during accumulation

Liouville's Theorem:

The density of particles in a
phase space is constant.
(for a Hamiltonian system).
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H- Charge Exchange Injection Concept

From linear
accelerator -
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From ring Hr=zex*p

In principle, we can accumulate extremely dense beams of particles in this way.

Unfortunately, the use of a foil to strip the electrons is limiting...
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Charge exchange at SNS is utilizes dogleg bump and foils

~400 yg/cm?
nanocrystalline
diamond foils

New Foil Used Foil

& Stripping foil
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Injection painting is created with variable strength kickers

Xay Stripping foi o | |
N ¢ * Helps minimize circulating beam foill
N _ passes

» Helps build custom phase space
distributions
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SNS had early foil and foll mounting issues that limited
beam power

Vacuum chamber wall

Early issues have been pordo Stripped proton beam
overcome: o i1 1 P S B
. nmpectung H beam
« Changed foil bracket from > S 0
Al to TZM e clectrons
« Aggressive foil R&D and ;
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SNS Folls — Fabrication and Testing capabilities in house

- CVD tool used to grow SNS foils at Pulsed, 30 keV electron beam, 5 mA,

Center for Nanophase Material 0.3 mm?spot size can simulate 2.8 MW equivalent
Science (co-located with SNS) heat loads on small spot

Foil Vertical & Rotatonal




R&D partnership with center for nanophase material
science focused on foil production and characterization

. . . . . ) Photo: C. Luck
Analysis of Nanocrystaline Diamond Foil Nucleation Techniques Test stand and

SNS Operations

Foil Flutter
Holes
Curling
Buckling
> Y o, WL ] Tearing
afh QYL d
o '~2.3x10? particles/cm? l

Connect observations to
< improve foil uniformity and
CNMS reliability, and understand
Nano-scale Characterization how performance is
related to structure
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Grain Size Uniformity
Residual Stress
Changes during
conditioning

Photos Courtesy of S. Retterer
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Foll recipe development now produces foils that last
months at 1.4 MW

Silicon Substrate Used foil on bracket in SNS

¥  Develop with ultraviolet light

¥ Etch with Buffered Oxide Etch ¥

m

7 Strip resist with Acetone 7
v Etch Silicon with TMAH v

V¥ Strip oxide with Buffered Oxide Etch ¥

Conditioned
Corner

Engineered features




Foils have 2 major limitations

1. Radiation: 2. Foil sublimation limit :
2.5
Beam Pipe ‘/ 20
‘9‘% Foil o %1 :
*— o o o~ 5
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w
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TIK)
+ Scattered particles hit beam pipe,  There is a practical beam power density
cause radiation. limit for foil use.
« Typical radiation: 1 rem per hour « Until recently, relationship between foll

temp and beam power unknown
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Foll temperature and sublimation measured for first time

Foil temp measurement

DM F2

Imaging Optics

PD1

15t prediction
of failure limit

Beam-based foil thinning
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Practical beam power limit for foil use

at SNS is 6-8 MW for 1 -1.3 GeV




Part ll. Replacing foils with non-interceptive technique
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The Concept: Laser Assisted Charge Exchange (LACE)
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Primary Challenge has historically been laser power

=|nitial concept proposed
<Required unrealistic laser powers, due to energy spread in ion beam

eLaser divergence proposed to accommodate energy spread
=6ns stripping POP achieved with 10 MW peak UV laser

=lon beam laser power savings techniques, reduced required laser power by x10
=Temporal matching, reduced average power by x100
=10 us macropulse stripping with 1 MW UV peak laser power

<Full duty factor capable method proposed

=Sequential resonance reduces required power by x3-4
<POP experiment underway

=Moving to green laser will give x2 increase in laser power
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Challenges with precision of laser parameters

Stripping Efficiency vs Laser Radius and Angle

« Experiment requires very
high precision in laser angle.

* This is an alignment and
stability challenge

a (mrad)
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Challenges with laser Transport Line

- Due to high radiation near the laser-H° IP, the laser source had to be placed in a remote
location, 65-meters away

- A laser transport line (LTL) was retrofitted into the existing accelerator tunnel
- LTL is significant source of instability

- Uncontrolled environment (i.e., non-evacuated, vibrations, temperature & humidity
changes)

Final
optics
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Experimental vessel and setup was installed
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Status: Experiment demonstrated 95% stripping efficiency
for 10us

 1000x better than first 6
ns experiment, but 100
time less than needed

* Requires 1 MW peak
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Recent Breakthrough: Sequential resonance excitation is
the solution to power challenge

n=3 excitation required 1
for H- below 2 GeV n=
n=3
n=2
1 MW UV \A\—
n=1
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Power savings in two ways:

1. Less power required for each
excitation

2. Possibility of using other laser
wavelengths. Generating UV
laser from an IR laser requires
cutting original power twice in
the harmonic conversion

This makes LACE operationally feasible



Sequential resonance excitation provides many benefits

First Step n=1—-2 is extremely efficient for certain cases:
« UV at 700 MeV and Green at 1.3 GeV (blue and brown curves)

* Red curve was first experiments at SNS
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Two laser-ion interactions in seguential resonance scheme

For proof of principle experiment, retrofit original vessel to save cost

Chose setup: n=1-2, and thenn =24
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Current System Layout

Feedback stabilization

RSB

meter Laser
nsport Line
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FBM — feedback mirror

PBS — polarizing beam splitter
BS — beam splitter

VS — viewscreen

PM — power meter
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First step was to confirm n=1->2 excitation

Excite n=1->2

Measure fluorescence
from n=2->1 de-
excitation

Wavelength of
detected light
depends on angle of
view

laser beam
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Experimental results confirms 15t excitation step
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First attempt to detect 1% step with fluorescence: We all
do dumb things sometimes...

We put the light detector
exactly at position where
light would appear at laser
wavelength in lab frame.

Couldn’t untangle it from
laser light reflections.

Duh . ...

AAAAAAAAAA
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First detection of 2-excitation stripping achieved
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- Efficiency Is very low. Why?
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Retrofitting previous experimental vessel does not allow
ideal laser parameters.

First step excitation efficiency vs laser
angle and radius

Due to non-ideal laser parameters:

e Can achieve no better than 70%
excitation from n=1-2

e Can achieve no better than 30%
excitation from n=2—4

0
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Laser beam positional and spot stability is major issue,
seems to be gettering worse

J00

Most pﬁlses
ft Goal for every
200} Bl pulse ‘
%’; 150+ =
100
50
RS : (B8
0 02 04 a6 08 1
Stripping Efficiency
In 10 us experiment, pulse to pulse efficiency Now see significant instability in laser spot size -
was low in original experiment due to laser cause unknown

positional jitter.
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Efficiency improvements will be implemented

To increase stripping efficiency with this set up, we can:

= Improve stabllity of laser (feedback and troubleshoot)
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= Sgueeze vertical beam size, so laser density can be high | vericaiy squeeze and aiign

>
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P
- Minimize ion beam energy spread /

o
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- Tailor the dispersion to provide energy spread compensation

/
- Squeeze the beam longitudinally *}_,
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Longitudinal Crab-crossing squeeze
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Longitudinal Crab-crossing squeeze
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Timeline

= Demonstration of 1st step sequential resonance — Done!

2019-2020

= Low efficiency demonstration 2"d step sequential resonance laser-assisted stripping — Ongoing
= High efficiency demonstration 2"d step sequential resonance laser-assisted stripping — Soon
= Begin design of real injection concept — Ongoing

* PPU upgrade to 1.3 GeV @ 2.8 MW at SNS
= Switch to green laser technology and repeat stripping demonstration
= Complete design of real injection concept

= |Install test concept in SNS injection region
= Test laser stripping for real injection into ring
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