

Physics of multi-bend achromat lattices

Ryan Lindberg

Physicist, Accelerator Systems Division Advanced Photon Source, Argonne National Laboratory

NSCL/FRIB Nuclear Science Seminar September 18, 2019 in East Lansing, Michigan

Acknowledgments

- Members of the APS-U physics team
 - Michael Borland for suggestions and material
 - Joe Calvey, Vadim Sajaev, and Yipeng Sun for slide material
 - Tim Berenc, Jeff Dooling, Louis Emery, Kathy Harkay, Uli Wienands, Kent Wootton, Aimin Xiao
- Colleagues from other institutions
 - Gabriele Bassi (NSLS-II), Alexei Blednykh (NSLS-II), Marco Venturini (ALS/ALS-U)
 - ESRF-EBS physics team
- Computing resources at ANL's Blues and Bepop clusters, and ASD's weed cluster
- Funding from the DOE Office of Basic Energy Sciences

Motivation: X-rays for science

- X-rays have played an important role in scientific discovery since their discovery
- X-rays are now used to probe many systems:
 - Electronic and magnetic materials
 - Chemical science
 - Life science and medicine
 - Biology and biochemistry
 - Geological and planetary science
 - Nanomaterials

. . .

Motivation: X-rays for science

- X-rays have played an important role in scientific discovery since their discovery
- X-rays are now used to probe many systems:
 - Electronic and magnetic materials
 - Chemical science
 - Life science and medicine
 - Biology and biochemistry
 - Geological and planetary science
 - Nanomaterials

Press release. NobelPrize.org. Nobel Media AB 2019. Fri. 30 Aug 2019.

Motivation: X-rays for science

- X-rays have played an important role in scientific discovery since their discovery
- X-rays are now used to probe many systems:
 - Electronic and magnetic materials
 - Chemical science
 - Life science and medicine
 - Biology and biochemistry
 - Geological and planetary science
 - Nanomaterials

F. Shen et al., ACS Energy Lett. 3, 1056 (2018). ©2018 American Chemical Society Microstructure-driven failure in Lithium ion batteries

Press release. NobelPrize.org. Nobel Media AB 2019. Fri. 30 Aug 2019.

1. Bending magnets

Light sources are located all over the world

To search lists of APS publications see https://beam.aps.anl.gov/pls/apsweb/pub_v2_0006.review_start_page

Calendar Years

To search lists of APS publications see https://beam.aps.anl.gov/pls/apsweb/pub_v2_0006.review_start_page

First generation sources

- Storage ring was primarily built and used for high energy physics
- Scientists used bending magnet radiation parasitically

Second generation sources

- Specifically built as a light source
- Primarily relied on bending magnets, with some space for wigglers and undulators

Third generation sources

- Optimized for x-ray production
- Contains long (several meter) straight sections for undulators

First generation sources

- Storage ring was primarily built and used for high energy physics
- Scientists used bending magnet radiation parasitically

Second generation sources

- Specifically built as a light source
- Primarily relied on bending magnets, with some space for wigglers and undulators

Third generation sources

- Optimized for x-ray production
- Contains long (several meter) straight sections for undulators

First generation sources

- Storage ring was primarily built and used for high energy physics
- Scientists used bending magnet radiation parasitically

Second generation sources

- Specifically built as a light source
- Primarily relied on bending magnets, with some space for wigglers and undulators

Third generation sources

- Optimized for x-ray production
- Contains long (several meter) straight sections for undulators

First generation sources

- Storage ring was primarily built and used for high energy physics
- Scientists used bending magnet radiation parasitically

Second generation sources

- Specifically built as a light source
- Primarily relied on bending magnets, with some space for wigglers and undulators

Third generation sources

- Optimized for x-ray production
- Contains long (several meter) straight sections for undulators

Increasing x-ray spectral flux Increasing x-ray brightness *B*

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

High brightness \rightarrow Ability to focus large numbers of photons to a small spot

- \rightarrow Large photon flux through an aperture
- \rightarrow High level of transverse coherence (coherent fraction)

First generation sources

- Storage ring was primarily built and used for high energy physics
- Scientists used bending magnet radiation parasitically

Second generation sources

- Specifically built as a light source
- Primarily relied on bending magnets, with some space for wigglers and undulators

Third generation sources

- Optimized for x-ray production
- Contains long (several meter) straight sections for undulators

Increasing x-ray spectral flux

Increasing x-ray brightness \mathcal{B}

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

High brightness \rightarrow Ability to focus large numbers of photons to a small spot

- \rightarrow Large photon flux through an aperture
- \rightarrow High level of transverse coherence (coherent fraction)

Largely determined by magnetic source

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

Largely determined by magnetic source

- Due to its wave nature, radiation has an intrinsic $(2D \text{ area})_x = (2D \text{ area})_y = 2\pi \frac{\lambda}{4\pi} = 2\pi \varepsilon_{rad}$
- X-rays are emitted from a collection of electrons with differing angles and positions, so that the total transverse phase space area is obtained as a convolution of the electron and x-ray phase spaces

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time proportional to}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

Largely determined by magnetic source

- Due to its wave nature, radiation has an intrinsic $(2D \text{ area})_x = (2D \text{ area})_y = 2\pi \frac{\lambda}{4\pi} = 2\pi \varepsilon_{rad}$
- X-rays are emitted from a collection of electrons with differing angles and positions, so that the total transverse phase space area is obtained as a convolution of the electron and x-ray phase spaces

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time proportional to}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

Largely determined by magnetic source

- Due to its wave nature, radiation has an intrinsic $(2D \text{ area})_x = (2D \text{ area})_y = 2\pi \frac{\lambda}{4\pi} = 2\pi \varepsilon_{rad}$
- X-rays are emitted from a collection of electrons with differing angles and positions, so that the total transverse phase space area is obtained as a convolution of the electron and x-ray phase spaces

• The transverse phase space area of the electron beam is given by its emittance times 2π . RMS emittance $\varepsilon_x = (RMS \text{ spatial size})(RMS \text{ angular spread})$

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time proportional to}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

Largely determined by magnetic source

- Due to its wave nature, radiation has an intrinsic $(2D \text{ area})_x = (2D \text{ area})_y = 2\pi \frac{\lambda}{4\pi} = 2\pi \varepsilon_{rad}$
- X-rays are emitted from a collection of electrons with differing angles and positions, so that the total transverse phase space area is obtained as a convolution of the electron and x-ray phase spaces

$$\mathcal{B} = N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = \frac{\varepsilon_{r}^{2}}{\varepsilon_{x}\varepsilon_{y}} N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = \frac{\varepsilon_{r}^{2}}{\varepsilon_{x}\varepsilon_{y}} N_{\text{electron}} \mathcal{B}_{0}$$

$$\text{if } \varepsilon_{x}, \varepsilon_{y} \ll \varepsilon_{r} = \frac{\lambda}{4\pi}$$

$$\text{if } \varepsilon_{x}, \varepsilon_{y} \gg \varepsilon_{r} = \frac{\lambda}{4\pi}$$

• The transverse phase space area of the electron beam is given by its emittance times 2π . RMS emittance $\varepsilon_x = (RMS \text{ spatial size})(RMS \text{ angular spread})$

 $\mathcal{B} = \frac{\text{Number of photons}}{6\text{D phase space volume}} = \frac{\text{photons/time proportional to}}{(2\text{D area})_x(2\text{D area})_y(\text{Spectral bandwidth})}$

Largely determined by magnetic source

- Due to its wave nature, radiation has an intrinsic $(2D \text{ area})_x = (2D \text{ area})_y = 2\pi \frac{\lambda}{4\pi} = 2\pi \varepsilon_{rad}$
- X-rays are emitted from a collection of electrons with differing angles and positions, so that the total transverse phase space area is obtained as a convolution of the electron and x-ray phase spaces

$$\mathcal{B} = N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = \frac{\varepsilon_{r}^{2}}{\varepsilon_{x}\varepsilon_{y}} N_{\text{electron}} \mathcal{B}_{0}$$

$$\mathcal{B} = \frac{\varepsilon_{r}^{2}}{\varepsilon_{x}\varepsilon_{y}} N_{\text{electron}} \mathcal{B}_{0}$$

$$\text{if } \varepsilon_{x}, \varepsilon_{y} \ll \varepsilon_{r} = \frac{\lambda}{4\pi}$$

$$\text{if } \varepsilon_{x}, \varepsilon_{y} \gg \varepsilon_{r} = \frac{\lambda}{4\pi}$$

• The transverse phase space area of the electron beam is given by its emittance times 2π . RMS emittance $\varepsilon_x = (RMS \text{ spatial size})(RMS \text{ angular spread})$

Maximizing the x-ray brightness at short wavelengths requires minimizing the emittance!

 \overline{Z}

• Synchrotron radiation leads to transverse damping:

Electron with initial momentum p at an angle ψ_i

Synchrotron emission along direction of motion reduces |p|

[1] M. Sands, SLAC Report No. 8, 1969.

• Synchrotron radiation leads to transverse damping:

Electron with initial momentum p at an angle ψ_i

Synchrotron emission along direction of motion reduces |p|

Acceleration in rf cavity restores only p_z , such that final angle $\psi_f < \psi_i$

[1] M. Sands, SLAC Report No. 8, 1969.

Synchrotron radiation leads to transverse damping:

Electron with initial momentum p at an angle ψ_i

Synchrotron emission along direction of motion reduces |p|

Acceleration in rf cavity restores only p_z , such that final angle $\psi_f < \psi_i$

• Synchrotron emission also leads to diffusion

Synchrotron radiation leads to transverse damping:

[1] M. Sands, SLAC Report No. 8, 1969.

Synchrotron radiation leads to transverse damping:

• Net result is Fokker-Planck dynamics that has a Gaussian equilibrium when damping balances diffusion

[1] M. Sands, SLAC Report No. 8, 1969.

- The properties of a linear lattice built of ideal quadrupoles (focusing elements) and dipoles (bending elements) are determined entirely by the lattice functions^[2]
 - Orbit: Reference trajectory of on-axis electron that is at the design energy
 - Beta function β_x : beam envelope function (rms size)
 - Alpha function α_x : position-angle correlation in beam
 - Dispersion function η_x : Displacement of trajectory from reference orbit due to energy difference

- The properties of a linear lattice built of ideal quadrupoles (focusing elements) and dipoles (bending elements) are determined entirely by the lattice functions^[2]
 - Orbit: Reference trajectory of on-axis electron that is at the design energy
 - Beta function β_x : beam envelope function (rms size)
 - Alpha function α_x : position-angle correlation in beam
 - Dispersion function η_x : Displacement of trajectory from reference orbit due to energy difference
- The equilibrium emittance is computed by integrating "curly- \mathcal{H} " around the ring^[1]

$$\varepsilon_{x,0} = \gamma^2 \frac{55}{32\sqrt{3}} \frac{\hbar c}{mc^2} \frac{\oint ds \ \mathcal{H}(s)/\rho(s)^3}{J_x \oint ds \ 1/\rho(s)^2}$$

[2] Courant and Snyder, Annals of Physics 3, 1 (1995).

[1] M. Sands, SLAC Report No. 8, 1969.

- The properties of a linear lattice built of ideal quadrupoles (focusing elements) and dipoles (bending elements) are determined entirely by the lattice functions^[2]
 - Orbit: Reference trajectory of on-axis electron that is at the design energy
 - Beta function β_x : beam envelope function (rms size)
 - Alpha function α_x : position-angle correlation in beam
 - Dispersion function η_x : Displacement of trajectory from reference orbit due to energy difference
- The equilibrium emittance is computed by integrating "curly- \mathcal{H} " around the ring^[1]

 $\begin{array}{l} \text{Emittance} \sim (\text{energy})^2 & \underbrace{C_q \approx 3.84 \times 10^{-4} \text{ nm}}_{\mathcal{E}_{x,0}} \\ \varepsilon_{x,0} = \gamma^2 \underbrace{\frac{55}{32\sqrt{3}} \frac{\hbar c}{mc^2}}_{32\sqrt{3}} \frac{\oint ds \ \mathcal{H}(s)/\rho(s)^3}{J_x \oint ds \ 1/\rho(s)^2} \end{array} \right. \\ \rho = \text{bending radius}$

[1] M. Sands, SLAC Report No. 8, 1969.

- The properties of a linear lattice built of ideal quadrupoles (focusing elements) and dipoles (bending elements) are determined entirely by the lattice functions^[2]
 - Orbit: Reference trajectory of on-axis electron that is at the design energy
 - Beta function β_x : beam envelope function (rms size)
 - Alpha function α_x : position-angle correlation in beam
 - Dispersion function η_x : Displacement of trajectory from reference orbit due to energy difference
- The equilibrium emittance is computed by integrating "curly- \mathcal{H} " around the ring^[1]

 $\begin{array}{l} \text{Emittance} \sim (\text{energy})^2 & C_q \approx 3.84 \times 10^{-4} \text{ nm} \\ \\ \varepsilon_{x,0} = \gamma^2 \underbrace{55}_{32\sqrt{3}} \frac{\hbar c}{mc^2} \underbrace{\oint ds \ \mathcal{H}(s)/\rho(s)^3}_{J_x \ \oint ds \ 1/\rho(s)^2} \end{array} \quad \rho = \text{bending radius} \end{array}$

 J_x = "damping partition" that quantifies the amount of radiation damping in the horizontal plane.

Typically $J_x = 1$, but with suitable design we can set $1 \le J_x \le 3$.

[2] Courant and Snyder, Annals of Physics 3, 1 (1995).

[1] M. Sands, SLAC Report No. 8, 1969.

- The properties of a linear lattice built of ideal quadrupoles (focusing elements) and dipoles (bending elements) are determined entirely by the lattice functions^[2]
 - Orbit: Reference trajectory of on-axis electron that is at the design energy
 - Beta function β_x : beam envelope function (rms size)
 - Alpha function α_x : position-angle correlation in beam
 - Dispersion function η_x : Displacement of trajectory from reference orbit due to energy difference
- The equilibrium emittance is computed by integrating "curly- \mathcal{H} " around the ring^[1]

Emittance ~ (energy)² $C_q \approx 3.84 \times 10^{-4} \text{ nm}$ $\varepsilon_{x,0} = \gamma^2 \frac{55}{32\sqrt{3}} \frac{\hbar c}{mc^2} \frac{\oint ds \mathcal{H}(s)/\rho(s)^3}{J_x \oint ds 1/\rho(s)^2}$ $J_x = \text{"damping partition" that quantifies the amount of radiation damping in the horizontal plane.}$ Typically $J_x = 1$, but with suitable design we can set $1 \leq J_x < 3$. $F(s) = \beta_x(s)\eta'_x(s)^2 + 2\alpha_x(s)\eta_x(s)\eta'_x(s) + \frac{1 + \alpha_x^2(s)}{\beta_x(s)}\eta_x(s)^2$ $Curly-\mathcal{H}$ gets contributions from the dispersion and its derivative weighted by the respective lattice functions. Curly-\mathcal{H} adds to the emittance when the trajectory is bent.

[2] Courant and Snyder, Annals of Physics 3, 1 (1995).

[1] M. Sands, SLAC Report No. 8, 1969.

Using small emittance requirement for lattice design

• For a constant field bending magnet, one can solve for the lattice functions that result in the smallest equilibrium emittance: the Theoretical Minimum Emittance (TME) cell^[3]

[3] L.C. Teng. "Minimum emittance lattice for synchrotron radiation storage rings," Argonne National Laboratory Tech. Rep. No. LS-17 (1985).

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

TME : $\varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{12\sqrt{15}}$
Using small emittance requirement for lattice design

- For a constant field bending magnet, one can solve for the lattice functions that result in the smallest equilibrium emittance: the Theoretical Minimum Emittance (TME) cell^[3]
- The dispersion in a TME cell is at its minimum at the middle of the dipole, but having zero dispersion in the straight sections is often desired
 - Avoid emittance increase due to quantum diffusion in the undulator
 - Avoid beam size increase and the resulting increase in effective emittance in undulator
- Double bend (2 dipoles) achromat (zero dispersion going in and coming out) has become standard for 3rd generation light sources^[4,5]

 $\begin{array}{ll}\text{Minimum}\\\text{DBA}: & \varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{4\sqrt{15}}\end{array}$

TME : $\varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{12 \sqrt{15}}$

Using small emittance requirement for lattice design

- For a constant field bending magnet, one can solve for the lattice functions that result in • the smallest equilibrium emittance: the Theoretical Minimum Emittance (TME) cell^[3]
- The dispersion in a TME cell is at its minimum at the middle of the dipole, but having • zero dispersion in the straight sections is often desired
 - Avoid emittance increase due to quantum diffusion in the undulator
 - Avoid beam size increase and the resulting increase in effective emittance in undulator
- Double bend (2 dipoles) achromat (zero dispersion going in and coming out) has • become standard for 3rd generation light sources^[4,5]

[3] L.C. Teng. "Minimum emittance lattice for synchrotron radiation storage rings," Argonne National Laboratory Tech. Rep. No. LS-17 (1985). [4] W.H.K. Panofsky in High Energy Beam Optics, ed. by K.G. Steffen (Wiley, New York) p. 117 (1965). [5] R. Chasman, G.K. Green, and E.M. Rowe. "Preliminary Design of a Dedicated Synchrotron Radiation Facility." IEEE Trans. Nucl. Sci. 22, 1765 (1975).

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

TME : $\varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{12\sqrt{15}}$

DBA: $\varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{4\sqrt{15}}$

Minimum

Using small emittance requirement for lattice design

- For a constant field bending magnet, one can solve for the lattice functions that result in the smallest equilibrium emittance: the Theoretical Minimum Emittance (TME) cell^[3]
- The dispersion in a TME cell is at its minimum at the middle of the dipole, but having zero dispersion in the straight sections is often desired
 - Avoid emittance increase due to quantum diffusion in the undulator
 - Avoid beam size increase and the resulting increase in effective emittance in undulator
- Double bend (2 dipoles) achromat (zero dispersion going in and coming out) has become standard for 3rd generation light sources^[4,5]

TME : $\varepsilon_{x,0} = \frac{C_q \gamma^2 \Theta^3}{12 \sqrt{15}}$

IMPORTANT NOTE: No effort has been made to use realistic quadrupole strengths or to keep the vertical plane under control.

Meeting these criteria and achieving other performance goals generally requires some trade-offs in emittance!

[3] L.C. Teng. "Minimum emittance lattice for synchrotron radiation storage rings," Argonne National Laboratory Tech. Rep. No. LS-17 (1985).
[4] W.H.K. Panofsky in *High Energy Beam Optics*, ed. by K.G. Steffen (Wiley, New York) p. 117 (1965).
[5] R. Chasman, G.K. Green, and E.M. Rowe. "Preliminary Design of a Dedicated Synchrotron Radiation Facility." IEEE Trans. Nucl. Sci. 22, 1765 (1975).

- First lattice used by APS was a double bend achromat
- ESRF reduced their emittance by allowing dispersion in the straight sections
- APS followed their example in ~2001 and decreased its emittance

•

- First lattice used by APS was a double bend achromat
- ESRF reduced their emittance by allowing dispersion in the straight sections
- APS followed their example in ~2001 and decreased its emittance

13

- First lattice used by APS was a double bend achromat
- ESRF reduced their emittance by allowing dispersion in the straight sections
- APS followed their example in ~2001 and decreased its emittance
- Change at the APS was enabled by "top-up" injection
 - The short electron beam lifetime in the low-emittance lattice resulted in an untenable reduction in beam current between ring fills
 - Advances in lattice performance are often enabled by other factors

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

The equilibrium emittance generally scales in the following way:

 $\varepsilon_{x,0} = C_q \gamma^2 \begin{pmatrix} \text{Factor depending upon} \\ \text{lattice function design} \\ \text{and magnetic field profile} \end{pmatrix} \begin{pmatrix} \text{Bend angle} \\ \text{per dipole} \end{pmatrix}^3$

The equilibrium emittance generally scales in the following way:

 $\varepsilon_{x,0} = C_q \gamma^2 \left(\begin{array}{c} \text{Factor depending upon} \\ \text{lattice function design} \\ \text{and magnetic field profile} \end{array} \right) \left(\begin{array}{c} \text{Bend angle} \\ \text{per dipole} \end{array} \right)^3$

1. Minimize curly- \mathcal{H} directly with lattice design

$$\mathcal{H}(s) = \beta_x(s)\eta'_x(s)^2 + 2\alpha_x(s)\eta_x(s)\eta'_x(s) + \frac{1 + \alpha_x^2(s)}{\beta_x(s)}\eta_x(s)^2$$

- Having small dispersion η_x in dipole
- Having small envelope function β_x in dipole

The equilibrium emittance generally scales in the following way:

 $\varepsilon_{x,0} = C_q \gamma^2 \left(\begin{array}{c} \text{Factor depending upon} \\ \text{lattice function design} \\ \text{and magnetic field profile} \end{array} \right) \left(\begin{array}{c} \text{Bend angle} \\ \text{per dipole} \end{array} \right)^3$

1. Minimize curly- \mathcal{H} directly with lattice design

$$\mathcal{H}(s) = \beta_x(s)\eta'_x(s)^2 + 2\alpha_x(s)\eta_x(s)\eta'_x(s) + \frac{1 + \alpha_x^2(s)}{\beta_x(s)}\eta_x(s)^2$$

- Having small dispersion η_x in dipole
- Having small envelope function β_x in dipole
- 2. Minimize $\oint ds \mathcal{H}(s)/\rho(s)^3$ by designing dipoles with specific bend radius profiles (longitudinal gradients)
- 3. Increase *x*-damping (J_x) by using dipoles with transverse gradients (focusing)

The equilibrium emittance generally scales in the following way:

 $\varepsilon_{x,0} = C_q \gamma^2 \begin{pmatrix} \text{Factor depending upon} \\ \text{lattice function design} \\ \text{and magnetic field profile} \end{pmatrix} \begin{pmatrix} \text{Bend angle} \\ \text{per dipole} \end{pmatrix}^3$ $\left(\begin{array}{c} \text{Number of} \\ \text{dipoles} \end{array}\right)$

1. Minimize curly- \mathcal{H} directly with lattice design

$$\mathcal{H}(s) = \beta_x(s)\eta'_x(s)^2 + 2\alpha_x(s)\eta_x(s)\eta'_x(s) + \frac{1 + \alpha_x^2(s)}{\beta_x(s)}\eta_x(s)^2$$

- Having small dispersion η_x in dipole →
- Having small envelope function β_{r} in dipole →
- 2. Minimize $\oint ds \mathcal{H}(s)/\rho(s)^3$ by designing dipoles with specific bend radius profiles (longitudinal gradients)
- 3. Increase x-damping (J_x) by using dipoles with transverse gradients (focusing)

Favors using as many bending magnets per periodic sector → Multi- (>3) Bend Achromat

The equilibrium emittance generally scales in the following way:

 $\varepsilon_{x,0} = C_q \gamma^2 \begin{pmatrix} \text{Factor depending upon} \\ \text{lattice function design} \\ \text{and magnetic field profile} \end{pmatrix} \begin{pmatrix} \text{Bend angle} \\ \text{per dipole} \end{pmatrix}^3$ $\begin{pmatrix} \text{Number of} \\ \text{dipoles} \end{pmatrix}$

1. Minimize curly- \mathcal{H} directly with lattice design

$$\mathcal{H}(s) = \beta_x(s)\eta'_x(s)^2 + 2\alpha_x(s)\eta_x(s)\eta'_x(s) + \frac{1 + \alpha_x^2(s)}{\beta_x(s)}\eta_x(s)^2$$

- Having small dispersion η_x in dipole →
- Having small envelope function β_{r} in dipole →
- 2. Minimize $\oint ds \mathcal{H}(s)/\rho(s)^3$ by designing dipoles with specific bend radius profiles (longitudinal gradients)
- 3. Increase x-damping (J_x) by using dipoles with transverse gradients (focusing)

Favors using as many bending magnets per periodic sector → Multi- (>3) Bend Achromat

Einfeld and Plesko^[6] proposed a rings that take advantage of this favorable MBA scaling in early to mid 90's.

No MBA projects began until > 15 years later.

WHY?

[6] D. Einfeld and M. Plesko. "A modified QBA optics for low emittance storage rings," NIMA 335, 402 (1993); "Design of a diffraction limited light source (DIFL)," Proc. of PAC 95, pp. 177.

• The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

Similar results apply for MBA sectors

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

• The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

Similar results apply for MBA sectors

• We find that we need strong focusing so that the required quadrupole strength scales $\sim N_D^2 rac{1}{(\ell/L)C_p^2}$

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

> We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

> > Similar results apply for MBA sectors

- The strong quadrupoles introduce large chromatic aberrations (chromaticity) that scales $\sim N_D$

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

• The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

Similar results apply for MBA sectors

- We find that we need strong focusing so that the required quadrupole strength scales $\sim N_D^2 rac{1}{(\ell/L)}$
- The strong quadrupoles introduce large chromatic aberrations (chromaticity) that scales $\sim N_D$
- To correct for the energy dependence of the focusing we add sextupoles, each of which need to contribute ~1 unit of chromaticity.

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

> We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

> > Similar results apply for MBA sectors

- The strong quadrupoles introduce large chromatic aberrations (chromaticity) that scales $\sim N_D$
- To correct for the energy dependence of the focusing we add sextupoles, each of which need to contribute ~1 unit of chromaticity.
- Hence, the integrated sextupole strength and its contribution to nonlinear dynamics scales $\sim N_D^3 \frac{1}{C_p^2}$

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

The favorable emittance scaling $\varepsilon_x \sim 1/N_D^3$ only obtains if we also add focusing magnets to reduce the quantum excitation in the bending magnets

> We can study this in more detail using a simple model of a ring whose circumference is C_R that is composed of idealized TME-like cells.

> > Similar results apply for MBA sectors

- The strong quadrupoles introduce large chromatic aberrations (chromaticity) that scales $\sim N_D$
- To correct for the energy dependence of the focusing we add sextupoles, each of which need to contribute ~1 unit of chromaticity.
- Hence, the integrated sextupole strength and its contribution to nonlinear dynamics scales $\sim N_D^3 \frac{1}{C^2}$

MBAs require strong magnets with small apertures!

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014). Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019 Argoni

15

- 1. Real lattices are not perfect, having errors in magnet alignment, strength, etc.
 - For example, displacing a sextupole leads to a variation of the (ideally) periodic envelope (β_x) function around the ring

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

- 1. Real lattices are not perfect, having errors in magnet alignment, strength, etc.
 - For example, displacing a sextupole leads to a variation of the (ideally) periodic envelope (β_x) function around the ring
 - Having ~N_D displaced magnets randomly distributed around the ring leads to the rms variation

 $\left\langle \frac{\Delta \beta_x(s)}{\beta_x(s)} \right\rangle_{\rm rms} \sim N_D^{5/2} \frac{\langle \Delta x \rangle_{\rm rms}}{C_R} \implies \text{The required tolerance for sextupole} \\ \text{magnet alignment } \langle \Delta x \rangle_{\rm rms} \sim 1/N_D^{5/2}$

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

- 1. Real lattices are not perfect, having errors in magnet alignment, strength, etc.
 - For example, displacing a sextupole leads to a variation of the (ideally) periodic envelope (β_x) function around the ring
 - Having ~N_D displaced magnets randomly distributed around the ring leads to the rms variation

 $\left\langle \frac{\Delta \beta_x(s)}{\beta_x(s)} \right\rangle_{\rm rms} \sim N_D^{5/2} \frac{\langle \Delta x \rangle_{\rm rms}}{C_R} \implies \text{The required tolerance for sextupole} \\ \text{magnet alignment } \langle \Delta x \rangle_{\rm rms} \sim 1/N_D^{5/2}$

Secto

Perfect

10

- 2. Real lattices only store particles that are sufficiently close to the nominal orbit
 - Vacuum chambers provide the physical aperture
 - Obtaining desired magnet strengths requires chambers with ~10 mm radius, which drastically reduces vacuum conductance and makes pumping to ultra-low vacuum difficult

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

- 1. Real lattices are not perfect, having errors in magnet alignment, strength, etc.
 - For example, displacing a sextupole leads to a variation of the (ideally) periodic envelope (β_x) function around the ring
 - Having ~N_D displaced magnets randomly distributed around the ring leads to the rms variation

 $\left\langle \frac{\Delta \beta_x(s)}{\beta_x(s)} \right\rangle_{\rm rms} \sim N_D^{5/2} \frac{\langle \Delta x \rangle_{\rm rms}}{C_R} \implies \text{The required tolerance for sextupole} \\ \text{magnet alignment } \langle \Delta x \rangle_{\rm rms} \sim 1/N_D^{5/2}$

- 2. Real lattices only store particles that are sufficiently close to the nominal orbit
 - Vacuum chambers provide the physical aperture
 - Obtaining desired magnet strengths requires chambers with ~10 mm radius, which drastically
 reduces vacuum conductance and makes pumping to ultra-low vacuum difficult
 - Stability of nonlinear dynamics leads to the "dynamic" aperture, and the nonlinear dynamics associated with the strong sextupoles \Rightarrow Dynamic aperture $\sim 1/N_D$

NOTE: Dynamic aperture scales as $1/N_D^2$ if sextupole lengths shrink like $1/N_D$ as number of dipoles is increased

[7] M. Borland, G. Decker, L. Emery, V. Sajaev, Y. Sun, and A. Xiao. "Lattice design challenges for fourth-generation storage-ring light sources," J. Synchrotron Rad. 21, 912 (2014).

Upgrade projects are underway around the world

Upgrade projects are underway around the world

- MAX-IV is serving users
 in Sweden
- ESRF-EBS (France) and SIRIUS (Brazil) are under construction
- The other MBAs are in various stages of development

Upgrade projects are underway around the world

- MAX-IV is serving users
 in Sweden
- ESRF-EBS (France) and SIRIUS (Brazil) are under construction
- The other MBAs are in various stages of development
- These developments have been driven by advances in
 - Technology
 - Lattice design
 - Simulation capabilities

MAX-IV: the first MBA storage ring

- MAX-IV in Lund, Sweden, is the first MBA-based storage ring, and has been operational since 2017
- Natural emittance of 330 nm is ~10x smaller than similar DBA rings

[8] P. F. Tavares, S. C. Leemann, M. Sjöström, and Å. Andersson, J. Synchrotron Rad. **21** 862 (2014). Reproduced with permission of the International Union of Crystallography

MAX-IV: the first MBA storage ring

- MAX-IV in Lund, Sweden, is the first MBA-based storage ring, and has been operational since 2017
- Natural emittance of 330 nm is ~10x smaller than similar DBA rings

Dipoles with theoretical minimum emittance-type lattice functions

 [8] P. F. Tavares, S. C. Leemann, M. Sjöström, and Å. Andersson, J. Synchrotron Rad. 21 862 (2014). Reproduced with permission of the International Union of Crystallography
 [9] R. Kersevan. Proc. of EPAC 2000, pp. 2289.

- Two critical enabling technologies:
 - 1. NEG coating of vacuum chambers^[9]
 - Reduces photon-stimulated desorption
 - Provides distributed pumping
 - Enables ultra-low vacuum in small aperture chambers

MAX-IV: the first MBA storage ring

- MAX-IV in Lund, Sweden, is the first MBA-based storage ring, and has been operational since 2017
- Natural emittance of 330 nm is ~10x smaller than similar DBA rings

[8] P. F. Tavares, S. C. Leemann, M. Sjöström, and Å. Andersson, J. Synchrotron Rad. 21 862 (2014).

- Reproduced with permission of the International Union of Crystallography
 - [9] R. Kersevan. Proc. of EPAC 2000, pp. 2289.

- Two critical enabling technologies:
 - 1. NEG coating of vacuum chambers^[9]
 - Reduces photon-stimulated desorption
 - Provides distributed pumping
 - Enables ultra-low vacuum in small aperture chambers
 - 2. Utra-precise machining of unified magnet blocks.
 - Reduced tolerances to 20 micron level

M. Grabski. J. Synchrotron Rad. 21 878 (2014). Reproduced with permission of the International Union of Crystallography

Reverse bends and longitudinal gradient dipoles can enable further emittance reduction

[11] M. Aiba et al., "SLS-2 Conceptual Design Report," ed. A. Streun (PSI, 2017), http://www.lib4ri.ch/archive/nebis/PSI Berichte 000478272/PSI-Bericht 17-03.pdf.

Reverse bends and longitudinal gradient dipoles can enable further emittance reduction

[11] M. Aiba et al., "SLS-2 Conceptual Design Report," ed. A. Streun (PSI, 2017), http://www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_17-03.pdf.

Reverse bends and longitudinal gradient dipoles can enable further emittance reduction

[11] M. Aiba et al., "SLS-2 Conceptual Design Report," ed. A. Streun (PSI, 2017), http://www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_17-03.pdf. [12] J.P. Delahaye and J.P. Potier, PAC 1989, pp. 1611. [13] B. Riemann and A. Streun, Phys. Rev. Accel. Beams 22, 021601 (2019).

Hybrid MBA lattice has a number of different features

 Hybrid MBA lattice^[14] was developed at the ESRF and is now being installed as part of their ESRF-EBS upgrade targeting 133 pm natural emittance

[14] L. Farvacque *et al.*, IPAC 2013, pp 79; L. Farvacque, *et al.*, "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (The European Synchrotron, 2018). https://www.esrf.eu/files/live/sites/www/files/about/upgrade/documentation/Design%20Report-reduced-jan19.pdf

Hybrid MBA lattice has a number of different features

Dispersion bump with all sextupoles for chromatic correction \rightarrow permits weaker sextupoles. Phase advance in both planes chosen to be (approx) an odd multiple of π to cancel geometric aberrations.

 Hybrid MBA lattice^[14] was developed at the ESRF and is now being installed as part of their ESRF-EBS upgrade targeting 133 pm natural emittance

[14] L. Farvacque *et al.*, IPAC 2013, pp 79; L. Farvacque, *et al.*, "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (The European Synchrotron, 2018). https://www.esrf.eu/files/live/sites/www/files/about/upgrade/documentation/Design%20Report-reduced-jan19.pdf

Hybrid MBA lattice has a number of different features

Dispersion bump with all sextupoles for chromatic correction \rightarrow permits weaker sextupoles.

Phase advance in both planes chosen to be (approx) an odd multiple of π to cancel geometric aberrations.

- Hybrid MBA lattice^[14] was developed at the ESRF and is now being installed as part of their ESRF-EBS upgrade targeting 133 pm natural emittance
- Our simulations indicate that the hybrid MBA typically has better nonlinear dynamics for high energy storage rings

[14] L. Farvacque *et al.*, IPAC 2013, pp 79; L. Farvacque, *et al.*, "ESRF-EBS Design Report," ed. by D. Einfeld and P. Raimondi (The European Synchrotron, 2018). https://www.esrf.eu/files/live/sites/www/files/about/upgrade/documentation/Design%20Report-reduced-jan19.pdf

Reverse bends enabled APS-U to further reduce emittance

• One of the first versions of the APS-U lattices was a 7-bend achromat with 67 pm emittance

[15] M. Borland, in FDR for APS-U (2019)

Reverse bends enabled APS-U to further reduce emittance

- One of the first versions of the APS-U lattices was a 7-bend achromat with 67 pm emittance
- Adding reverse bends allows for emittance reduction to 42 pm while maintaining (or even improving) the nonlinear dynamics

[15] M. Borland, in *FDR for APS-U* (2019)
Reverse bends enabled APS-U to further reduce emittance

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

[15] M. Borland, in FDR for APS-U (2019)

s (m)

Reverse bends enabled APS-U to further reduce emittance

Reverse bends enabled APS-U to further reduce emittance

Examples of MBA magnets built for the APS-U

Pictures courtesy G. Decker and M. Jaski

Examples of MBA magnets built for the APS-U

Examples of MBA magnets built for the APS-U

Pictures courtesy G. Decker and M. Jaski

Small dynamic acceptance can be partially overcome with advanced injection schemes

- Swap-out injection^[16,17] replaces a single bunch with minimal betatron oscillations
 - Possible with advances in fast (~ns), pulsed power supply technology
 - Planned for APS-U and HEPS in Beijing

[16] R. Abela, W. Joho, P. Marchand, S.V. Milton, and L.Z. Rivkin, EPAC 92, pp. 486. [17] L. Emery and M. Borland, PAC03, pp. 256.

Small dynamic acceptance can be partially overcome with advanced injection schemes

- Swap-out injection^[16,17] replaces a single bunch with minimal betatron oscillations
 - Possible with advances fast (~ns), pulsed power supply technology
 - Planned for APS-U and HEPS in Beijing
- ALS-U plans to combine a few nm-emittance accumulator ring with on-axis swap-out of bunch trains to allow for even tighter acceptance margins
- Many other possible injection schemes have been proposed including variants of longitudinal injection, schemes that use special magnets like an anti-septum or nonlinear kickers, etc.

[16] R. Abela, W. Joho, P. Marchand, S.V. Milton, and L.Z. Rivkin, EPAC 92, pp. 486.[17] L. Emery and M. Borland, PAC03, pp. 256.

- A higher harmonic cavity (HHC) can lengthen bunch and reduce current density of low-emittance beam
 - Improve Touschek lifetime
 - Reduce intensity-dependent emittance growth and instabilities
- Varying HHC frequency changes the voltage and thus the bunch length

- A higher harmonic cavity (HHC) can lengthen bunch and reduce current density of low-emittance beam
 - Improve Touschek lifetime
 - Reduce intensity-dependent emittance growth and instabilities
- Varying HHC frequency changes the voltage and thus the bunch length
 - "Ideal" HHC tuning flattens to rf potential, $V_{\parallel}(t) \sim t^4$.
 - "Overstretching" can make the bunch length ~2x "ideal" σ_t

- A higher harmonic cavity (HHC) can lengthen bunch and reduce current density of low-emittance beam
 - Improve Touschek lifetime
 - Reduce intensity-dependent emittance growth and instabilities
- Varying HHC frequency changes the voltage and thus the bunch length
 - "Ideal" HHC tuning flattens to rf potential, $V_{\parallel}(t) \sim t^4$.
 - "Overstretching" can make the bunch length ~2x "ideal" σ_t

 $V(t) \sim t^2$

[18] A. Xiao et al., Proc. of IPAC15, pp. 559.

- A higher harmonic cavity (HHC) can lengthen bunch and reduce current density of low-emittance beam
 - Improve Touschek lifetime
 - Reduce intensity-dependent emittance growth and instabilities
- Varying HHC frequency changes the voltage and thus the bunch length
 - "Ideal" HHC tuning flattens to rf potential, $V_{\parallel}(t) \sim t^4$.
 - "Overstretching" can make the bunch length ~2x "ideal" σ_t

 Touschek lifetime calculations^[18] show that overstretching the bunch can significantly increase lifetime

[18] A. Xiao et al., Proc. of IPAC15, pp. 559.

Argonne

High fidelity simulation tools are critical

- We rely heavily on simulations to predict complicated physics
- Making detailed comparisons between different codes is good for everyone

Parameter	elegant	AT
Horizontal tune, ν_x	95.0999	95.0993
Vertical tune, ν_y	36.0999	36.1007
Momentum compaction, $\times 10^{-5}$	4.0406	4.0399
Chromaticity, ξ_x	8.1183	8.1704
Chromaticity, ξ_y	4.7221	4.8739
Natural chrom., ξ_x^{nat}	-133.6488	-133.5874
Natural chrom., ξ_y^{nat}	-111.6335	-111.4689
Emittance (pm)	41.6612	41.6434
Energy loss per turn (MeV)	2.8688	2.8700
Momentum spread, σ_{δ} , $\times 10^{-3}$	1.3499	1.3494
Damping partition, J_x	2.2497	2.2495
Damping time τ_x (ms)	6.8446	6.8424

[19] M. Borland, Y.-P. Sun (ANL) and X. Huang (SLAC); unpublished

High fidelity simulation tools are critical

- We rely heavily on simulations to predict complicated physics
- Making detailed comparisons between different codes is good for everyone

Parameter	elegant	AT
Horizontal tune, ν_x	95.0999	95.0993
Vertical tune, ν_y	36.0999	36.1007
Momentum compaction, $\times 10^{-5}$	4.0406	4.0399
Chromaticity, ξ_x	8.1183	8.1704
Chromaticity, ξ_y	4.7221	4.8739
Natural chrom., ξ_x^{nat}	-133.6488	-133.5874
Natural chrom., ξ_y^{nat}	-111.6335	-111.4689
Emittance (pm)	41.6612	41.6434
Energy loss per turn (MeV)	2.8688	2.8700
Momentum spread, σ_{δ} , $\times 10^{-3}$	1.3499	1.3494
Damping partition, J_x	2.2497	2.2495
Damping time τ_x (ms)	6.8446	6.8424

Variation of tune (fractional oscillation frequency)

[19] M. Borland, Y.-P. Sun (ANL) and X. Huang (SLAC); unpublished

High fidelity simulation tools are critical

- We rely heavily on simulations to predict complicated physics
- Making detailed comparisons between different codes is good for everyone

Parameter AT elegant Horizontal tune, ν_x 95.0993 95.0999 Vertical tune, ν_{y} 36.0999 36.1007 Momentum compaction, $\times 10^{-5}$ 4.04064.0399Chromaticity, ξ_x 8.1704 8.1183 Chromaticity, ξ_u 4.87394.7221Natural chrom., ξ_x^{nat} -133.6488-133.5874Natural chrom., ξ_{u}^{nat} -111.6335-111.4689Emittance (pm) 41.6612 41.6434 Energy loss per turn (MeV) 2.86882.8700Momentum spread, σ_{δ} , $\times 10^{-3}$ 1.34991.3494Damping partition, J_x 2.24952.2497Damping time τ_x (ms) 6.8446 6.8424

Variation of tune (fractional oscillation frequency)

Advanced algorithms enable robust optimization

- Lattice optimization a highly nonlinear problem with many variables
- APS pioneered use of tracking-based optimization^[20] to rings^[21,22]
- For APS-U, we use a multi-objective genetic algorithm^[23] (MOGA) to evolve linear and nonlinear lattice properties, including
 - Particle tracking to determine injection aperture and lifetime
 - X-ray brightness calculation to determine performance at 10 keV
 - Constraints provided by engineering designs
 - Various error sets to insure robustness of solution

^[20] I. Bazarov et al, PRSTAB 8, 034202 (2005).
[21] H. Shang et al., PAC 2005, pp. 4230.
[22] M. Borland et al., PAC 2009, pp. 3850.
[23] K. Deb et al., IEEE Trans. on Evol. Comp. 6, 182 (2002).

Advanced algorithms enable robust optimization

- Lattice optimization a highly nonlinear problem with many variables
- APS pioneered use of tracking-based optimization^[20] to rings^[21,22]
- For APS-U, we use a multi-objective genetic algorithm^[23] (MOGA) to evolve linear and nonlinear lattice properties, including
 - Particle tracking to determine injection aperture and lifetime
 - X-ray brightness calculation to determine performance at 10 keV
 - Constraints provided by engineering designs
 - Various error sets to insure robustness of solution

Advanced algorithms enable robust optimization

- Lattice optimization a highly nonlinear problem with many variables
- APS pioneered use of tracking-based optimization^[20] to rings^[21,22]
- For APS-U, we use a multi-objective genetic algorithm^[23] (MOGA) to evolve linear and nonlinear lattice properties, including
 - Particle tracking to determine injection aperture and lifetime
 - X-ray brightness calculation to determine performance at 10 keV
 - Constraints provided by engineering designs
 - Various error sets to insure robustness of solution

- Commissioning simulations are a more accurate way to derive error sets for subsequent lattice evaluation
- The main motivation behind commissioning simulations was the desire to minimize dark time during an upgrade
 - ESRF, APS-U, ALS-U, and SIRIUS have all developed automated commissioning tools^[24]

- Commissioning simulations are a more accurate way to derive error sets for subsequent lattice evaluation
- The main motivation behind commissioning simulations was the desire to minimize dark time during an upgrade
 - ESRF, APS-U, ALS-U, and SIRIUS have all developed automated commissioning tools^[24]
- Our lattice commissioning simulations consist of
 - 1. Establishing first turn
 - 2. Multi-turn trajectory correction
 - 3. Orbit correction
 - 4. Beta function and coupling correction

All while including all sources of errors that we can think of:Magnet alignment, tilt, strength, BPM offset, calibration, ...

[24] See, e.g., talks for the "Beam Tests and Commissioning Workshop," 2019 on indico

All while including all sources of

errors that we can think of:

Magnet alignment, tilt, strength, BPM offset, calibration, ...

- Commissioning simulations are a more accurate way to derive error sets for subsequent lattice evaluation
- The main motivation behind commissioning simulations was the desire to minimize dark time during an upgrade
 - ESRF, APS-U, ALS-U, and SIRIUS have all developed automated commissioning tools^[24]
- Our lattice commissioning simulations consist of
 - 1. Establishing first turn
 - 2. Multi-turn trajectory correction
 - 3. Orbit correction
 - 4. Beta function and coupling correction
- Early simulations showed that the uncorrected dynamic aperture is expected to be smaller than the expected orbit errors
 - Trajectory is corrected to zero, but beam is not captured if (distance between trajectory and orbit) > (dynamic aperture)
- Sextupoles should be off until one achieves hundreds of turns, at which point they can be slowly powered up.

[24] See, e.g., talks for the "Beam Tests and Commissioning Workshop," 2019 on indico

- Commissioning simulations are a more accurate way to derive error sets for subsequent lattice evaluation
- The main motivation behind commissioning simulations was the desire to minimize dark time during an upgrade
 - ESRF, APS-U, ALS-U, and SIRIUS have all developed automated commissioning tools^[24]
- Our lattice commissioning simulations consist of
 - 1. Establishing first turn
 - 2. Multi-turn trajectory correction
 - 3. Orbit correction
 - 4. Beta function and coupling correction
- Early simulations showed that the uncorrected dynamic aperture is expected to be smaller than the expected orbit errors
 - Trajectory is corrected to zero, but beam is not captured if (distance between trajectory and orbit) > (dynamic aperture)
- Sextupoles should be off until one achieves hundreds of turns, at which point they can be slowly powered up.

Median dynamic aperture for uncorrected lattice F = scaling of magnet error tolerances

[24] See, e.g., talks for the "Beam Tests and Commissioning Workshop," 2019 on indico

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

All while including all sources of errors that we can think of:Magnet alignment, tilt, strength, BPM offset, calibration, ...

- Commissioning simulations are a more accurate way to derive error sets for subsequent lattice evaluation
- The main motivation behind commissioning simulations was the desire to minimize dark time during an upgrade
 - ESRF, APS-U, ALS-U, and SIRIUS have all developed automated commissioning tools^[24]
- Our lattice commissioning simulations consist of
 - Establishing first turn
 - Multi-turn trajectory correction 2.
 - Orbit correction 3.
 - Beta function and coupling correction 4.
- Early simulations showed that the uncorrected dynamic aperture is expected to be smaller than the expected orbit errors
 - Trajectory is corrected to zero, but beam is not captured if (distance between trajectory and orbit) > (dynamic aperture)
- Sextupoles should be off until one achieves hundreds of turns, at which point they can be slowly powered up.

Recent successful tests at APS have helped validate our approach

Median dynamic aperture for uncorrected lattice F = scaling of magnet error tolerances

Ryan Lindberg -- Physics of MBA lattice -- NSCL/FRIB Nuclear Science Seminar -- September 18, 2019

All while including all sources of errors that we can think of: Magnet alignment, tilt, strength, BPM offset, calibration, ...

- Ultra-low emittance light sources can open new frontiers in x-ray science
- Multi-bend achromats can be the next generation low emittance machine

- Ultra-low emittance light sources can open new frontiers in x-ray science
- Multi-bend achromats can be the next generation low emittance machine
- Along with great potential comes great challenges/opportunities
 - Strong magnets and small vacuum chambers
 - Tight error tolerances on magnets and alignment
 - Highly nonlinear dynamics and small dynamic aperture

- Ultra-low emittance light sources can open new frontiers in x-ray science
- Multi-bend achromats can be the next generation low emittance machine
- Along with great potential comes great challenges/opportunities
 - Strong magnets and small vacuum chambers
 - Tight error tolerances on magnets and alignment
 - Highly nonlinear dynamics and small dynamic aperture
- These challenges can be met with a host of
 - Clever design (gradient magnets, reverse bends, dispersion bumps)
 - Improved injection schemes
 - Extensive simulation and experiments
 - Advanced optimization techniques

- Ultra-low emittance light sources can open new frontiers in x-ray science
- Multi-bend achromats can be the next generation low emittance machine
- Along with great potential comes great challenges/opportunities
 - Strong magnets and small vacuum chambers
 - Tight error tolerances on magnets and alignment
 - Highly nonlinear dynamics and small dynamic aperture
- These challenges can be met with a host of
 - Clever design (gradient magnets, reverse bends, dispersion bumps)
 - Improved injection schemes
 - Extensive simulation and experiments
 - Advanced optimization techniques
- There are also a rich set of physics IN multi-bend achromats not covered here
 - Possibility for both traditional and fast-ion-like instability
 - Collective dynamics in harmonic bunch lengthening system
 - Beam dump material damage by ultra-low emittance beams
 - And more...

- Ultra-low emittance light sources can open new frontiers in x-ray science
- Multi-bend achromats can be the next generation low emittance machine
- Along with great potential comes great challenges/opportunities
 - Strong magnets and small vacuum chambers
 - Tight error tolerances on magnets and alignment
 - Highly nonlinear dynamics and small dynamic aperture
- These challenges can be met with a host of
 - Clever design (gradient magnets, reverse bends, dispersion bumps)
 - Improved injection schemes
 - Extensive simulation and experiments
 - Advanced optimization techniques
- There are also a rich set of physics IN multi-bend achromats not covered here
 - Possibility for both traditional and fast-ion-like instability
 - Collective dynamics in harmonic bunch lengthening system
 - Beam dump material damage by ultra-low emittance beams
 - And more...

Thank you for your attention!

