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Overview

• Spallation Neutron Source at ORNL

– Neutron scattering research for new discoveries  
in physics, biology, chemistry, materials science 
and engineering

– 1.4 MW proton accelerator produces neutrons 
by spallation on a liquid mercury target

Aerial view of SNS at ORNL

ACS Cent. Sci. 2019, 5, 1, 85–96Nature 569, 495-496 (2019)

Molecular Cell 74, 713–728 (2019)
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In-situ Plasma Processing to Reach 1 GeV Beam Energy

• Higher linac energy provides more 
margin for reliable operation at 1.4 
MW

– Goal was to improve from 940 to 1000 
MeV beam energy at 60 Hz

• Most cavities at SNS are limited by 
field emission (FE) leading to thermal 
instability in end-groups

– Average accelerating gradients are 12 
and 13 MV/m for the two cavity 
geometries

• Developed in-situ plasma processing 
to reduce FE and increase 
accelerating gradients*
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Hydrocarbon contaminants on Nb surfaces

• Hydrocarbon contaminants observed on all Nb surfaces

– Volatile hydrocarbons released from cryomodule surfaces during thermal cycle

– Hydrocarbons on offline spare cavity surfaces

– Hydrocarbons fragments seen on Nb small samples in secondary ion mass spectrometry (SIMS)

• Hydrocarbons tends to lower work function of Nb surface

– Develop in-situ plasma processing to remove hydrocarbons from cavity RF surface

H2

CH4 C2H4
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In-situ plasma processing to reduce field emission

• Plasma processing aims at

– Reducing FE by increasing work function of cavity RF surface

– Enabling operation at higher accelerating gradients

• Scaling from Fowler-Nordheim equation

– 10-20% increase in f leads to 20-30% increase in Eacc
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Oxygen plasma for removing hydrocarbons

• Plasma is a rich and reactive 
environment

– Ions, e-, neutrals, excited neutrals, 
molecules, radicals, UV… 

• Plasma processing is a versatile 
technique used for various purposes

– Cleaning, activation, deposition, 
crosslinking, etching….

• Chosen to develop a technique using 
reactive oxygen plasma at room-
temperature

– Volatile by-products are formed through 
oxidation of hydrocarbons and pumped out 

Nucl. Instrum. Methods Phys. Res. A 812, 50–59 (2016)
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Plasma processing R&D strategy

R&D with Nb samples and offline cavities

In-situ processing in linac tunnel Processing of cryomodule in test cave

1st phase 2nd phase

4th phase 3rd phase

Processing of 6-cell cavity in HTA*

HB49
HB52

CM00012CM Slot 19
CM Slot 18
CM Slot 17
CM Slot 16
CM Slot 23
CM Slot 22
CM Slot 21

Proceedings of SRF2013, Paris, France, paper TUP057
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Plasma ignition

• Dependence on gas mixture, pressure and RF mode

– Determine best gas for plasma ignition/control - Neon at SNS

• pumping, optical monitoring, stability 

– Determine working pressure – 150 mTorr at SNS

• RF power, stability & sensitivity, margin cell/coupler

– Map ignition conditions for each RF modes – 6 modes at SNS
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Fundamental passband modes

• 6-cell cavities provide six mode-patterns 
to be used for controlling the discharge in 
each cell of the resonators

• Mode 6 is the one used for beam 
acceleration

• Using modes on resonance can’t break 
the left/right symmetry of the system

freq ign

MHz dBm

mode 1 792.664 10.9

mode 2 794.977 6.5

mode 3 798.089 5.9

mode 4 801.185 2.1

mode 5 803.462 1.3

mode 6 804.281 5.8
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Plasma ignition in each cell of the SNS cavities

• Off-resonance mode 
excitation provides a way to 
break the symmetry and 
target each cell individually

• Off-resonance excitation is 
inefficient

• Dual-tone excitation

– 1 mode on resonance +

– 1 mode off resonance

Dual-tone ignition parameters for high-beta cavities

J. Appl. Phys., 120, 243301 (2016)
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Plasma monitoring 

• The plasma discharge changes 
the dielectric constant and 
frequency of the cell 

• This leads to an upward shift of 
the cell frequency and 
perturbation of the mode 
pattern (i.e. cell amplitudes)

• This perturbation can be used 
to locate the plasma inside the 
cavity without needing optical 
monitoring

– Only using frequency shift  of 
mode contains left/right 
ambiguity

Mode shift

J. Appl. Phys., 120, 243301 (2016)
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Plasma cleaning studies

• Plasma cleaning studies on small samples 
were conducted using a microwave 
barrel station

• Samples were introduced in the barrel 
and plasma cleaned using a neon 
oxygen mixture under various conditions

• Heating effects were mitigated by 
spacing out short plasma cycles and 
subsequently by using a cooled sample 
stage

• Surface studies were conducted before 
and after plasma processing 

– Microscope, SIMS, Kelvin probe 
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• SIMS measurement shows that the 
hydrocarbons are removed from the Nb 
top surface

• Scanning Kelvin Probe shows that the 
work function increases

– Nb samples f=4.7 eV initially 

– Neon-oxygen  plasma processing 
systematically improves the work function

– ~0.8 eV increase measured

– Work function tends to degrade after 
venting to air

Applied Surface Science 369 (2016)
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Plasma cleaning of contaminated samples in cavity

• Contaminated samples were introduced in a 3-cell cavity 

• Plasma was generated in the end cells

– Samples adjacent to end cells were being cleaned

– Samples farther away weren’t

– Atomic O recombines into molecular O2

Base 

material

contaminants

plasma

by-products
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Monitoring of by-products during plasma processing

• Residual gas analysis during cleaning of the cavities

– Volatile by-products of hydrocarbon oxidation are measured in real time

– Decrease of their partial pressure indicate the top surface is being 
depleted of CxHy

– Typical processing time per cell ~1hour per plasma cycle

neon

oxygen
by-products
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Mutiple plasma processing cycles

• Our plasma cleaning is a top surface 
process 

• Over time at room temperature 
diffusion of of hydrocarbons from under 
layers to the top surface has been 
observed

– For cavities, multiple cleaning cycles over a 
couple of weeks has shown to be an 
effective solution
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Multiple cleaning cycles applied to cavities

• 5 plasma cycles over 2 weeks is typical for plasma processing of 
cryomodules at the SNS

• Partial recovery of by-product between (early) cycles has been observed

• RF power to induce the discharge tends to increase as the surface gets 
cleaner, typically by about 1 dB

Cycle 1 Cycle 4

neon

oxygen
by-products
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Plasma cleaning efficient from iris to equator

• Plasma cleaning studies were conducted in  
single cell cavity with small samples cut-outs

• Non uniformity of plasma density and 
recombination of atomic oxygen into 
molecular oxygen could hinder cleaning 
efficiency 

Proceedings of IPAC18, Vancouver, Canada, paper THPAL065

Single-cell cavity with small sample cut-outs.

• Samples inserted at 
various locations

– Iris, wall and equator

• Work function 
shown to increase 
for all locations 
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In-situ plasma processing at SNS

• Hardware comprises gas injection, RF and pumping systems

• Packaged in carts and rolled adjacent to the CM for plasma processing

• ~2 weeks to warm-up, plasma process and cool back down a CM

Gas injection system RF systems Pumping system
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In-situ plasma processing in SNS linac - vacuum

• Warm-up 2 cryomodules 

• Sections seeing process 
gas

– Ion pumps and CCGs off

• At least 2 sector gate 
valves between process 
gas and cold surface

– Mitigates risk of gas 
condensation on cold 
surfaces

– Active pumping in the 
buffer sections 
aadjacent to plasma 
processed CM
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In-situ plasma processing in SNS linac - RF
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top view

• All cavities disconnected from 
High power RF system

• High power top-hats on each 
cavity (2kW rated)

– No need to remove air side 
of coupler assemblies

• Cavities processed iteratively

– Multiple RF carts for 
simultaneous plasma 
processing of cavities
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Installation of plasma processing hardware
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WS CM
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Pumping port on WS 
with angle valve

WS CM
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Applied ALARA: Radiation survey indicated best location for minimum radiation exposure during work (<1 mrem/hr)
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Radiation level reduced after plasma processing

• Examples of radiation signals from two cavities

• Plasma processing has been observed to reduce radiation 
related to both field emission and multipacting

• Reduction varies between cavities
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Boost to 1 GeV

• In-situ plasma 
processing in linac
tunnel done during 
SNS planned down 
periods on HB CMs

• 32 cavities plasma 
processed at SNS 
with an average 
Eacc increase of 
2.5 MV/m

• Beam energy at 
SNS has been 
sustained at 1 GeV 
since summer 2018
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Collaboration - Plasma proc. for 1.3 GHz cavities

• LCLS-II will use 35 accelerating modules with 9-cell 1.3 GHz cavities to 
produce a 4 GeV electron beam and extremely bright X-ray laser light

– Cryomodules fabricated at FNAL and JLab

• Plasma processing is being developed to help sustain beam energy and 
accelerator performance over time

– Plasma processing test on LCLS-II HE vCM planned in 2021

More information about LCLS-II : Y. Ding,“Status of the LCLS-II CW X-ray FEL”, Invited talk at LINAC20
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Plasma processing using HOM couplers

• Large mismatch between Qex and Q0 at warm  for 
LCLS-II cavities makes it difficult to use FPC for plasma 
ignition

• P. Berrutti at FNAL developed a solution using HOM 
couplers

– Strong coupling to dipole pass-band modes

– Only a few watts needed to ignite a plasma

– Dual-tone method used to move the plasma in desired cell

J. Appl. Phys. 126, 023302 (2019)
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Performance recovery using plasma processing

• 1.3 GHz single cell cavity contaminated with carbon

– Eacc and Q0 degraded

– Eacc fully recovered after 17h with Ne-O2 plasma

Phys. Rev. Accel. Beams 24, 022002 (2021)
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• Proton Power Upgrade Project 
- PPU

– Under construction

– 1.3 GeV and 2.8 MW beam

– Early project completion is 
planned for 2025

– https://neutrons.ornl.gov/ppu

• Second Target Station Project -
STS

– CD-1 approval given in Nov. 2020

– https://neutrons.ornl.gov/sts

Beyond 1 GeV and 1.4 MW at SNS
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Conclusion

• In-situ plasma processing for superconducting RF  
resonators was developed at ORNL and successfully 
applied to increase the beam energy at the SNS

• Active developments and collaborations with other 
Laboratories for adapting plasma processing to other 
facilities


