

Plasma processing boosts the energy of the SNS superconducting linac

Marc Doleans for ORNL

FRIB-APES Seminar 22 October 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

- Spallation Neutron Source at ORNL
 - Neutron scattering research for new discoveries in physics, biology, chemistry, materials science and engineering
 - 1.4 MW proton accelerator produces neutrons by spallation on a liquid mercury target

Nucl. Instrum. Methods Phys. Res. A 763 (2014) 610-673

In-situ Plasma Processing to Reach 1 GeV Beam Energy

- Higher linac energy provides more margin for reliable operation at 1.4 MW
 - Goal was to improve from 940 to 1000
 MeV beam energy at 60 Hz
- Most cavities at SNS are limited by field emission (FE) leading to thermal instability in end-groups
 - Average accelerating gradients are 12 and 13 MV/m for the two cavity geometries
- Developed in-situ plasma processing to reduce FE and increase accelerating gradients*

CAK RIDGE SPALLATION National Laboratory SOURCE

Nucl. Instrum. Methods Phys. Res. A 852 (2017) 20-32

Hydrocarbon contaminants on Nb surfaces

- Hydrocarbon contaminants observed on all Nb surfaces
 - Volatile hydrocarbons released from cryomodule surfaces during thermal cycle
 - Hydrocarbons on offline spare cavity surfaces
 - Hydrocarbons fragments seen on Nb small samples in secondary ion mass spectrometry (SIMS)
- Hydrocarbons tends to lower work function of Nb surface
 - Develop in-situ plasma processing to remove hydrocarbons from cavity RF surface

In-situ plasma processing to reduce field emission

- Plasma processing aims at
 - Reducing FE by increasing work function of cavity RF surface
 - Enabling operation at higher accelerating gradients
- Scaling from Fowler-Nordheim equation

$$J = a \frac{(\beta E)^2}{\phi} e^{-b \frac{\phi^{3/2}}{\beta E} + \frac{c}{\phi^{1/2}}}$$
$$dJ = 0 \implies \frac{dE_{acc}}{E_{acc}} \approx \frac{3}{2} \frac{d\phi}{\phi}$$

- J : current density
- E : surface electric field
- β : field enhancement factor
- $\boldsymbol{\varphi}$: work function

- 10-20% increase in ϕ leads to 20-30% increase in Eacc

Oxygen plasma for removing hydrocarbons

- Plasma is a rich and reactive environment
 - lons, e-, neutrals, excited neutrals, molecules, radicals, UV...
- Plasma processing is a versatile technique used for various purposes
 - Cleaning, activation, deposition, crosslinking, etching....

CAK RIDGE SPALLATION National Laboratory SOURCE

- Chosen to develop a technique using reactive oxygen plasma at roomtemperature
 - Volatile by-products are formed through oxidation of hydrocarbons and pumped out

Plasma processing R&D strategy

R&D with Nb samples and offline cavities

In-situ processing in linac tunnel

Processing of 6-cell cavity in HTA*

Processing of cryomodule in test cave

Proceedings of SRF2013, Paris, France, paper TUP057

Plasma ignition

- Dependence on gas mixture, pressure and RF mode
 - Determine best gas for plasma ignition/control Neon at SNS
 - pumping, optical monitoring, stability
 - Determine working pressure 150 mTorr at SNS
 - RF power, stability & sensitivity, margin cell/coupler
 - Map ignition conditions for each RF modes 6 modes at SNS

Fundamental passband modes

- 6-cell cavities provide six mode-patterns to be used for controlling the discharge in each cell of the resonators
- Mode 6 is the one used for beam acceleration
- Using modes on resonance can't break the left/right symmetry of the system

	freq	ign	
	MHz	dBm	
mode 1	792.664	10.9	
mode 2	794.977	6.5	
mode 3	798.089	5.9	
mode 4	801.185	2.1	
mode 5	803.462	1.3	
mode 6	804.281	5.8	

CAK RIDGE National Laboratory

Plasma ignition in each cell of the SNS cavities

- Off-resonance mode excitation provides a way to break the symmetry and target each cell individually
- Off-resonance excitation is inefficient
- Dual-tone excitation
 - 1 mode on resonance +
 - 1 mode off resonance

Dual-tone ignition parameters for high-beta cavities

Cell ignition	RF gen. 1	δf_1 (hbw)	p _{RF1} (dB)	RF gen. 2	δf_2 (hbw)	p _{RF2} (dB)	Γ_1	Γ_2	Γ_3	Γ_4	Γ_5	Γ_6
1	mode 5	-1.0	-4.57	mode 6	+0.50	-3.46	1.00	0.72	0.41	0.37	0.62	0.90
2	mode 2	0.0	-2.02	mode 5	-2.50	0.87	0.74	1.00	0.24	0.18	0.88	0.69
3	mode 1	0.0	-1.80	mode 3	-1.50	4.15	0.88	0.80	1.00	0.91	0.89	0.78
4	mode 1	0.0	0.63	mode 4	-2.25	2.79	0.77	0.16	0.92	1.00	0.16	0.69
5	mode 2	0.0	-1.13	mode 6	-2.50	0.99	0.27	0.88	0.36	0.40	1.00	0.44
6	mode 5	0.0	-8.26	mode 6	-1.25	0.32	0.80	0.62	0.44	0.49	0.75	1.00

J. Appl. Phys., 120, 243301 (2016)

Plasma monitoring

- The plasma discharge changes the dielectric constant and frequency of the cell
- This leads to an upward shift of the cell frequency and perturbation of the mode pattern (i.e. cell amplitudes)
- This perturbation can be used to locate the plasma inside the cavity without needing optical monitoring
 - Only using frequency shift of mode contains left/right ambiguity

CAK RIDGE SPALLATION National Laboratory SOURCE

J. Appl. Phys., 120, 243301 (2016)

Plasma cleaning studies

- Plasma cleaning studies on small samples were conducted using a microwave barrel station
- Samples were introduced in the barrel and plasma cleaned using a neon oxygen mixture under various conditions
- Heating effects were mitigated by spacing out short plasma cycles and subsequently by using a cooled sample stage
- Surface studies were conducted before and after plasma processing
 - Microscope, SIMS, Kelvin probe

Work function increase

- SIMS measurement shows that the hydrocarbons are removed from the Nb top surface
- Scanning Kelvin Probe shows that the work function increases
 - Nb samples ϕ =4.7 eV initially
 - Neon-oxygen plasma processing systematically improves the work function
 - ~0.8 eV increase measured
 - Work function tends to degrade after venting to air

Plasma cleaning of contaminated samples in cavity

- Contaminated samples were introduced in a 3-cell cavity
- Plasma was generated in the end cells
 - Samples adjacent to end cells were being cleaned
 - Samples farther away weren't

DAK RIDGE SPALLATION National Laboratory SOURCE

- Atomic O recombines into molecular O2

Monitoring of by-products during plasma processing

- Residual gas analysis during cleaning of the cavities
 - Volatile by-products of hydrocarbon oxidation are measured in real time
 - Decrease of their partial pressure indicate the top surface is being depleted of CxHy
 - Typical processing time per cell ~1hour per plasma cycle

Mutiple plasma processing cycles

- Our plasma cleaning is a top surface process
- Over time at room temperature diffusion of of hydrocarbons from under layers to the top surface has been observed
 - For cavities, multiple cleaning cycles over a couple of weeks has shown to be an effective solution

Multiple cleaning cycles applied to cavities

- 5 plasma cycles over 2 weeks is typical for plasma processing of cryomodules at the SNS
- Partial recovery of by-product between (early) cycles has been observed
- RF power to induce the discharge tends to increase as the surface gets cleaner, typically by about 1 dB

Plasma cleaning efficient from iris to equator

- Plasma cleaning studies were conducted in single cell cavity with small samples cut-outs
- Non uniformity of plasma density and recombination of atomic oxygen into molecular oxygen could hinder cleaning efficiency
- Samples inserted at various locations
 - Iris, wall and equator
- Work function shown to increase for all locations

CAK RIDGE SPALLATION NEUTRON SOURCE

Single-cell cavity with small sample cut-outs.

Proceedings of IPAC18, Vancouver, Canada, paper THPAL065

In-situ plasma processing at SNS

- Hardware comprises gas injection, RF and pumping systems
- Packaged in carts and rolled adjacent to the CM for plasma processing
- ~2 weeks to warm-up, plasma process and cool back down a CM

In-situ plasma processing in SNS linac - vacuum

- Warm-up 2 cryomodules
- Sections seeing process gas
 - Ion pumps and CCGs off
- At least 2 sector gate valves between process gas and cold surface
 - Mitigates risk of gas condensation on cold surfaces
 - Active pumping in the buffer sections aadjacent to plasma processed CM

In-situ plasma processing in SNS linac - RF

- All cavities disconnected from High power RF system
- High power top-hats on each cavity (2kW rated)
 - No need to remove air side of coupler assemblies
- Cavities processed iteratively
 - Multiple RF carts for simultaneous plasma processing of cavities
- Cavities being plasma processed
 - FPC and field probe connected to RF cart
 - Camera monitors any discharge in FPC

SPALLATION National Laboratory

Installation of plasma processing hardware

SPALLATION National Laboratory

Applied ALARA: Radiation survey indicated best location for minimum radiation exposure during work (<1 mrem/hr)

Radiation level reduced after plasma processing

- Examples of radiation signals from two cavities
- Plasma processing has been observed to reduce radiation related to both field emission and multipacting
- Reduction varies between cavities

Multipacting regime

Actional Laboratory

Boost to 1 GeV

- In-situ plasma processing in linac tunnel done during SNS planned down periods on HB CMs
- 32 cavities plasma processed at SNS with an average Eacc increase of 2.5 MV/m
- Beam energy at SNS has been sustained at 1 GeV since summer 2018

CAK RIDGE SPALLATION NEUTRON SOURCE

Collaboration - Plasma proc. for 1.3 GHz cavities

- LCLS-II will use 35 accelerating modules with 9-cell 1.3 GHz cavities to produce a 4 GeV electron beam and extremely bright X-ray laser light
 - Cryomodules fabricated at FNAL and JLab
- Plasma processing is being developed to help sustain beam energy and accelerator performance over time
 - Plasma processing test on LCLS-II HE vCM planned in 2021

CAK RIDGE National Laboratory

More information about LCLS-II : Y. Ding, "Status of the LCLS-II CW X-ray FEL", Invited talk at LINAC20

Plasma processing using HOM couplers

- Large mismatch between ${\rm Q}_{\rm ex}$ and ${\rm Q}_{\rm 0}$ at warm for LCLS-II cavities makes it difficult to use FPC for plasma ignition
- P. Berrutti at FNAL developed a solution using HOM couplers
 - Strong coupling to dipole pass-band modes
 - Only a few watts needed to ignite a plasma
 - Dual-tone method used to move the plasma in desired cell

5 Fermilab

J. Appl. Phys. 126, 023302 (2019)

SPALLATION National Laboratory Performance recovery using plasma processing

- 1.3 GHz single cell cavity contaminated with carbon
 - Eacc and Q_0 degraded
 - Eacc fully recovered after 17h with Ne-O2 plasma

Fermilab

Phys. Rev. Accel. Beams 24, 022002 (2021)

Beyond 1 GeV and 1.4 MW at SNS

- Proton Power Upgrade Project
 PPU
 - Under construction
 - 1.3 GeV and 2.8 MW beam
 - Early project completion is planned for 2025
 - https://neutrons.ornl.gov/ppu
- Second Target Station Project -STS
 - CD-1 approval given in Nov. 2020
 - https://neutrons.ornl.gov/sts

Conclusion

- In-situ plasma processing for superconducting RF resonators was developed at ORNL and successfully applied to increase the beam energy at the SNS
- Active developments and collaborations with other Laboratories for adapting plasma processing to other facilities

