

Recent advances and breakthrough for SRF cavities at FNAL

Martina Martinello 12 March 2021

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

Particle Acceleration via SRF Cavities

- Superconducting Radio-Frequency (SRF) cavities are electro-magnetic resonators characterized by very low power dissipation
- The electric field provide acceleration to charged particles

4 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

Images from linearcollider.org, WIkipedia

Superconducting RF Cavities

- Niobium (Tc=9.2 K), T operation 2 4.5 K
- RF surface resistance $\rightarrow \underline{\text{fighting against n}\Omega}$
- Losses concentrate on the first ~100 nm of the **inner surface**

Beam view, inside the cavity

Extreme attention to surface treatments and surface cleanliness are mandatory

6 Slide courtesy of Anna Grassellino – IPAC 2017 tor Physics and Engineering Seminar

SRF Cavities figure of merits: Q_0 vs E_{acc}

<u>Q-factor</u> (Q_0) :

$$Q_0 = \frac{G}{R_s} = \frac{\omega_0 U}{P_d}$$

High $Q_0 \rightarrow$ lower power consumption. Limited by n Ω of surface resistance.

<u>Accelerating field</u> (E_{acc}):

Determine the energy transferred to charged particles.

High $E_{acc} \rightarrow$ lower accelerator length. Limited by quench of the SC state.

High Q at high gradients may reduce both *capital and operational costs* of accelerators Costs of accelerators

- ILC 500 GeV (16,000 Nb cavities) $Q = 1 \cdot 10^{10}$ at 31.5 MV/m
- **E-XFEL 17.5 GeV** (816 Nb cavities) $Q = 1 \cdot 10^{10}$ at 23.6 MV/m

5.5 5.0

> 4.5 4.0 3.5

> > 20

25

30

35

Eacc (MV/m)

45

40

50

gradient machines like ILC, E-XFEL upgrade, etc

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

‡ Fermilab

N-doping

- SIMS spectra: nitrogen in the material for about tens of micrometers
- TEM/NED: only Nb signal from diffraction pattern \rightarrow N is interstitial

‡Fermilab

15 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

N-doping

• SIMS spectra: nitrogen in the material for about 10-15 nanometers

‡Fermilab

75-120C baking

• SIMS spectra: oxygen in the material for about tens of nanometers

‡Fermilab

75-120C baking

75-120C baking

- SIMS spectra: nitrogen in the material for about 10-15 nanometers
- Vacancy-hydrogen complexes present also after 120C N-infusion?

‡Fermilab

120C N-infusion

• HF rinses studies shows that the N-infusion process modifies only the surface of the material

‡Fermilab

• HFQS behavior is totally re-established after removing ~ 20 nm

22 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

120C N-infusion

- HF rinses studies shows that the N-infusion process modifies only the surface of the material
- HFQS behavior is totally re-established after removing ~ 20 nm

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

The surface resistance

 $R_s = R_{BCS} + R_{fl} + R_0$

‡ Fermilab

Outline

- Introduction to SRF cavities
 State-of the art surface treatment
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

The surface resistance

Thermal-excitec

quasi-particles

Pair breaking

27 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

path, energy gap, penetration depth, etc)

First observation of R_{BCS} decreasing with field

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

R_{BCS} tuning with N-infusion at different T

By N-doping Nb cavities at lower temperatures (N-infusion) we can tune the Q-factor: ⇒ strong effects on the BCS and residual resistance

‡ Fermilab

A. Grassellino *et al.*, Supercond. Sci. Technol. **30**, 094004 (2017)

Study of Cavities at Different Frequency

Frequency dependence of R_{BCS}(Eacc): toward a better understanding

Frequency dependence of R_{BCS}(Eacc): toward a better understanding

Summary of the Frequency Dependence of R_{BCS}(Eacc)

M. Martinello et al., Phys. Rev. Lett. 121, 224801 (2018)

33 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

Summary of the Frequency Dependence of R_{BCS}(Eacc)

The R_{BCS} decreasing with the field, that has been considered the signature of the N-doped treatment, is actually visible also in clean Nb (EP/BCP) but at higher frequency (> 1.3 GHz)

M. Martinello et al., Phys. Rev. Lett. 121, 224801 (2018)

34 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

Doping and Frequency Effect on the QPs Distribution

- Higher the frequency, higher the probability to match the condition for non-equilibrium
- N-doping (surface treatments in general) may modify τ_{ep} and τ_r enhancing non-equilibrium effects

‡ Fermilab

A. Romanenko, LINAC 2014

High Frequency Cavities Favorable at High Field

Unprecedented Medium Field Q₀ at 3.9 GHz

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

The surface resistance

- magnetic field trapped during SC transition
- R₀ depends on defects, precipitates, etc..

39

3.6

3.2

‡Fermilab

3.0 2.57 2.25 2.0

TEMPERATURE

4.5 3.6

4.0 1

1.8

Trapped flux surface resistance

If pinned, vortices may survive in the Meissner state introducing dissipation:

 $R_{fl} = \eta_t \cdot S \cdot B$

 η_t —flux trapping efficiency

- S—trapped flux sensitivity
- *B*—external magnetic field

Trapped flux surface resistance

If pinned, vortices may survive in the Meissner state introducing dissipation:

dissipation:

$$R_{fl} = \eta_t \cdot S \cdot B$$

$$\eta_t - \text{flux trapping efficiency}$$

$$S - \left[\text{What is the cavity ability/efficiency to expel} \\ B - \left[\text{flux during the SC transition?} \\ \end{array} \right] \rightarrow \text{Higher is the ability to expel flux, lower is the flux trapping efficiency} \right]$$

Vortex

B↑

Vortex lattice

Fast cooldown helps flux expulsion

Flux expulsion depends on bulk properties of Nb cavities

- Flux expulsion is a bulk property → does not depend on surface treatment
- Not all materials show good flux expulsion, even with large thermal gradient during the SC transition → high T treatments allow to improve materials flux expulsion properties

Analysis of "as received" materials

- Material that shows good flux expulsion properties after annealing at 800C has bigger grain size in the "as received" condition
- Material with bad flux expulsion properties shows larger density of low-angle <u>GBs</u> (misorientation < 15°)
- Material with bad flux expulsion properties shows <u>larger density of regions</u> with very high local <u>misorientation</u>

Analysis of "as received" n

- Material that shows good flux expulsion properties after annealing at 800C has bigger grain size in the "as received" condition
- Material with bad flux expulsion properties shows larger density of low-angle <u>GBs</u> (misorientation < 15°)
- Material with bad flux expulsion properties shows larger density of regions with very high local misorientation
 - -> dislocations tangles

M. Martinello, SRF 2019

‡ Fermilab

Trapped flux surface resistance

If pinned, vortices may survive in the Meissner state introducing dissipation:

Vortex lattice

Vortex

Sensitivity versus mean-free-path

Sensitivity versus mean-free-path

Sensitivity as a function of the field

- At high field the trapped flux sensitivity increases exponentially
- 120C baked and Ninfused cavities have very low values of sensitivity at low field but significantly high at high field
- Important to take that into account fir highfield applications!

‡Fermilab

Sensitivity as a function of the field

Sensitivity as a function of the field

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

Plasma processing R&D for LCLS-II cavities

- Ne-O gas mixture (few % of O₂, mostly Ne) at p ~ 75-150mTorr
- Plasma ignition sequentially cell-by-cell using HOMs antenna (10-50 W for ignition, few W for sustain plasma) P. Berrutti et al., J. App. Phys. **126**, 023302 (2019)
- Approximately 1-2 hours processing per cell

First study in a 9-cell contaminated cavity

- Scope: remove hydrocarbon contamination with plasma cleaning
- 8 "dots" of permanent markers around the iris of the first cell of a 9-cell LCLS-II cavity

Summary results of plasma processed cavities

Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

57

LCLS-II CM production at FNAL

LCLS-II production at FNAL is complete now time to look at what's next

LCLS-II - High Energy

The LCLS-II-HE project will **increase the energy of the CW-SCRF linac to 8 GeV**, enabling the photon energy range to be extended to at least 13 keV and potentially up to 20 keV at 1 MHz repetition rates

Parameter	LCLS-II	LCLS-II HE
# 1.3 GHz CMs	35	20
Operating Gradient	16 MV/m	20.8 MV/m for new CMs 18 MV/m for old CMs
Required Q ₀ at Operating Gradient	2.7x10 ¹⁰	2.7x10 ¹⁰

‡Fermilab

N-doping optimization for LCLS-II HE

- 2N0 recipe studied in single-cell cavities showed higher gradient compare to 2N6 (LCLS-II) recipe
- Cold EP prevents preferential etching around nitrides leading to a smoother surface finishing -> higher gradients

18 19

17

Average cavity T on EP plateau (°C)

Fermilab

40

20

11 12 13 14 15 16

Verification-CM 9-cell cavities results

- New N-doping protocol (2N0 + cold EP) successfully transferred to industry
- Vertical test completed for 10 vCM cavities fabricated and processed in industry
- Performance exceeded specification with average Q0=3.6e10 and Eacc=25.6 MV/m
- 8 fully dressed cavities have been assembled in the vCM

Proton Improvement Plan at FNAL: PIP-II

Proton Improvement Plan at FNAL: PIP-II

State-of-the-art surface treatments in HB650 cavities

State-of-the-art surface treatments in 650 MHz cavities

Q₀ at 20 MV/m between ~ 3.7e10 and 4.2e10

Q₀ at 20 MV/m between ~ 2.5e10 and 4.2e10

 Q_0 at 20 MV/m between ~ 4.5e10 and 7.5e10

Q₀ at 20 MV/m between ~ 3.7e10 and 4.2e10

Q₀ at 20 MV/m between ~ 2.5e10 and 4.2e10

 Q_0 at 20 MV/m between ~ 4.5e10 and 7.5e10

Only N-doped cavities consistently exceed Q₀ spec

- Quench field between 17 and 30 MV/m
- HFQS onset starting from 16 MV/m to 27 MV/m
- Quench field between 18 and 35 MV/m
- HFQS onset starting from 17 MV/m to 27 MV/m
- Quench field between
 16 and 28 MV/m
- No HFQS

2/6 N-doping + 5-15um EP 1E11 8E10 -6E10 · °°°°°°°° 4E10 ð B9AS-RRCAT-301_2/6 N-doping + 5um EP B9AS-RRCAT-301_2/6 N-doping + 7um EP (add EP) 2F10 B9AS-AES-004_2/6 N-doping + 5um EP (estrapolated from 1.4K data B9AS-AES-004_2/6 N-doping + 5um EP (after EP re-set and 900C bakig) B9AS-PAV-104_2/6 N-doping + 5um EP B9AS-PAV-104_2/6 N-doping + 10um EP (add EP) B9AS-PAV-104_2/6 N-doping + 15um EP (add EP) PIP-II VTS spec 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Eacc

- Quench field between 17 and 30 MV/m
- HFQS onset starting from 16 MV/m to 27 MV/m
- Quench field between 18 and 35 MV/m
- HFQS onset starting from 17 MV/m to 27 MV/m
- Quench field between
 16 and 28 MV/m

‡Fermilab

No HFQS

In most cases early quench and/or HFQS onset is related to defects in the cavity, it is not a fundamental limitation

In most cases early quench and/or HFQS onset is related to defects in the cavity, it is not a fundamental limitation

‡Fermilab

In most cases early quench and/or HFQS onset is related to defects in the cavity, it is not a fundamental limitation

‡Fermilab

Cold EP on HB650 5-cell cavities

Quench field improved from 20 to 24 MV/m by adding 3um of cold EP

Cavity limited by FE at ~23MV/m, quench field may be higher

Cold EP on HB650 5-cell cavities

Quench field improved from 20 to 24 MV/m by adding 3um of cold EP

Cavity limited by FE at ~23MV/m, quench field may be higher

Cold EP on HB650 5-cell cavities

Quench field improved from 20 to 24 MV/m by adding 3um of cold EP

Cavity limited by FE at ~23MV/m, quench field may be higher

Cold EP on HB650 5-cell cavities

Quench field improved from 20 to 24 MV/m by adding 3um of cold EP

Cavity re-tested after HPR at Lab2 showed large FE starting from low field

Summary results on HB650 5-cell cavities

Martina Martinello | MSU - Accelerator Physics and Engineering Seminar

LB650 and 644 MHz cavities studies

- Collaboration between FNAL and INFN to optimize Q-factor on PIP-II LB650 (b=0.62) cavities, first results in Ndoped single-cell cavity very promising
- Collaboration between FNAL, MSU and ANL through an Accelerator Stewardship Award focused on transferring the doping technology to 5-cell LB 644MHz cavities. Results also very promising!

Kellen McGee

PhD student from MSU now working at FNAL Recipient of DOE Office of Science Graduate Student Research Fellowships

HWR and SSR1 pCM assembly

HWR cryomodule cold mass assembly

SSR1 cryomodule cold mass assembly

Outline

- Introduction to SRF cavities
- State-of the art surface treatments
- Toward a better understanding
 - BCS surface resistance: new insights and optimization
 - Residual resistance: understanding and minimizing degradation due to trapped flux
- Technology improvement for SRF-based projects
- Conclusions

SRF performance: past, present and future

SRF performance: past, present and future

Slide adapted from Mattia Checchin

Thank you for your attention!

83 Martina Martinello | MSU - Accelerator Physics and Engineering Seminar