

Nb₃Sn SRF Cavity Development at Fermilab

Sam Posen NSCL Nuclear Science Seminar September 12, 2018

Particle Acceleration via SRF Cavities

- Superconducting radiofrequency (SRF) cavities
- High quality EM resonators: Typical $Q_0 > 10^{10}$
- Over billions of cycles, large electric field generated
- Particle beam gains energy as it passes through

Particle Acceleration via SRF Cavities

- Superconducting radiofrequency (SRF) cavities
- High quality EM resonators: Typical $Q_0 > 10^{10}$

Par

Inpu

Over hillions of cycles large electric field generated.

ately 4x10⁹

Niobium

SRF: high current, high energy, high brightness beams

~1 m

Images from linearcollider.org, Wlkipedia

Impact of SRF on Accelerators for Science

- Low energy nuclear physics, for nuclear shape, spin, vibration
 - Heavy ion linacs
- Medium energy nuclear physics, structure of nucleus, quark-gluon physics

 Recirculating linac
- Nuclear astrophysics, for understanding the creation of elements – Facility for rare isotope beams (FRIB)
- X-Ray Light Sources for life science, materials science & engineering

 Storage rings, free electron lasers, energy recovery linacs
- Spallation neutron source for materials science and engineering, life science, biotechnology, condensed matter physics, chemistry
 - High intensity proton linac
- Future High Intensity Proton Sources for

 Nuclear waste transmutation, energy amplifier, power generation from Thorium

High energy physics for

 Electron-positron storage ring colliders, linear collider, proton linacs for neutrinos

SRF Accelerators Around the World

Map from Wikipedia. Non-exhaustive facility list.

SRF Accelerators Around the World

Map from Wikipedia. Non-exhaustive facility list.

SRF Accelerators Around the World

Map from Wikipedia. Non-exhaustive facility list.

Gradient -> Length for Linear Accelerator Q_0 also important! ILC cost vs. Gradient and Q0 140 ---- Q0=4.0e9 130 ---- Q0=6.0e9 120 ---- Q0=8.0e9 ILC: 8,000 --- Q0=1.6e9 Cost (%) 110 ---- Q0=3.2e9 cavities in 100 16 km linac 90 80 Baseline design 70 60 20 30 40 50 Gradient MV/m 8 cavities ~10 m Linearbeschleuniger Linear accelerator European XFEL

8 8/12/18 Sam Posen Image from linearcollider.org. Tunnelflug video by European XFEL. Cost analysis by N. Solyak

Q₀ -> Cryogenic Infrastructure, Operating Cost

SRF Figures of Merit: Q vs E Curve

Higher energy gain per length

Cavity performance depends on nm properties of inner surface

• RF currents concentrated in the first ~100 nm of the inner surface

Cavity performance depends on nm properties of inner surface

RF losses concentrated in the first ~100 nm of the inner surface

Fermilab Materials Science Laboratory – Understanding how to push performance through investigation of microstructure

Fermilab Materials Science Laboratory – Understanding how to push performance through investigation of microstructure

Material characterization of inner cavity surface

0.09

<u>RF characterization + T-map</u> highlight areas with different dissipative behavior Generation of <u>cavity cut-outs</u> leads to the most representative samples that can be analyzed

Major Cavity Processing/Treatment Facilities

8/12/18

Cryomodule Assembly

- Facilities used for: clean assembly of cryomodules, from individual cavities to accelerator-ready module
- Projects/Programs served: LCLS-II, PIP-II, future SRF accelerator projects, opportunity for assembly of high gradient R&D cryomodule to push state-of-the-art
- Uniqueness of facility: one of two major cryomodule assembly facilities in the US, ~4 of this scale in the world

Example: LCLS-II Cryomodule Assembly

Non-accelerator SRF applications: quantum computing and dark sector searches

Nb₃Sn SRF Coating at Fermilab

Why is Niobium the Traditional SRF Material?

- Niobium has been the material of choice for SRF cavities for the last ~50 years
- Niobium has some of the best superconducting properties of all elements including highest critical temperature $T_{\rm c} \sim 9.2~{\rm K}$
- Easy to work with purify, make sheets, form, weld, treat
 Not a compound! Don't need to achieve precise stoichiometry
- Other important features: good structural and thermal properties in bulk form, long coherence length (relatively low defect sensitivity), doesn't react with water

Images from Roark, G. Orly, ESS, SRF 2015, and Fermilab

Why Consider Nb₃Sn?

- Larger T_c, larger predicted ultimate field (see next slides)
- Niobium compound: can convert existing cavities
- Only two elements next step in stoichiometric complexity
- Coherence length smaller than niobium but still several nm
- Brittle and low thermal conductivity, but can be used as a film with thickness large compared to the RF penetration depth

High Q₀(T) via Nb₃Sn

- Large $T_c \sim 18$ K for Nb₃Sn
 - Very small $R_{BCS}(T) R_{BCS}(T) \sim e^{-1.76T_c/T}$
 - High Q₀ even at relatively high T
- Higher temperature operation
 - Simpler cryogenic plant
 - Higher efficiency

CERN cryogenic plant

Maximum Accelerating Field

- For high gradient applications, the superheating field of Nb₃Sn is predicted to be twice that of niobium, potentially providing twice as large acceleration per unit length
- This is significantly beyond current performance levels
- R&D to avoid microstructural inhomogeneities may improve maximum fields

Low Heat-loss RF Coupler

งั้งกากก่า สายายายา

Cryo-cooler Cold Head

> Integrated Electron Gun

Nb₃Sn Coated Cavity

No Liquid Heluim

Slide courtesy Charles Thangaraj/IARC, Fermilab

Nb₃Sn SRF Experimental Program at Fermilab

- Program initiated in 2015, first coatings in early 2017
- Nb₃Sn SRF program goals:
 - 1. Process development to push performance: Q_0 and E_{acc}
 - 2. Scale up to production-style cavities and study in cryomodulelike environment
 - 1.3 GHz 1-cell (current state of Nb₃Sn R&D)

650 MHz 5-cell (future)

Fermilab Nb₃Sn Coating System

First and only Nb₃Sn coating chamber capable of coating 1.3 GHz 9-cell cavities or 5-cell 650 MHz cavities

辈 Fermilab

Coating Parameter Optimization

Coating Mechanism: Vapor Diffusion

Technique development: Saur and Wurm, Die Naturwissenchaften 1962, Hillenbrand et al. IEEE Transactions on Magnetics 1977, Peiniger et al, SRF'88.

"Phase Locking" to Achieve Desired Composition

SAMPLE POSITION

0.7 g tin evaporated

Тор

Bottom

Coating Parameter Optimization

- Parameter optimization to avoid over-/under-coating
- Several parameters found to be important:
 - Crucible diameter
 - Heater power

- Coating time
 - Annealing time

Extremely Important Tool – T-map

Spot #1 – Board 33, resistor #8, 37.4 degrees

Coating Parameter Optimization

- To date, best appearance and performance at Fermilab achieved with:
 - Smallest diameter crucible tested
 - Heater at maximum power (crucible ~1200 C)
 - Cavity anodized to 30 V prior to coating

S. Posen, TTC Meeting 2018, Tokyo, Japan

Q vs E

- Very high Q₀ at 2.0 K ~5e10 at useful fields ~10 MV/m
- Excellent low and mid-field
 Q₀ at 4.4 K
 >1e10
- Still some Qslope but nice quench field
- Sharp 18 K transitions

S. Posen, TTC Meeting 2018, Tokyo, Japan

Surface Studies and Q-Slope

Hints for Improvements: What causes Q-Slope?

Nb₃Sn-Coated Nb Cavity (ERL1-5) and Cutout Samples

Q of 10⁹ @ low fields; significant Q-slope starting from 5 MV/m

Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).

8/12/18

Sam Posen

Cold vs. Hot cutout: SEM/EDS at 20 kV

Hot cutout: what are the "patchy" regions?

41 Y. Trenikhina, S. Starse R, as enomenteo, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. 8th 2tet 8nol., 31 015004 (2017).

Cold vs. Hot: TEM on cross-sectional samples

42 Y. Trenikhina, S. Statte R, osemomanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. 861.2618 nol., 31 015004 (2017).

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

43 Y. 8/12 2017). Y. 8/12 2017 Seemanenko, M. Sardela, J.-M. Zuo, D. L. Hall and M. Liepe, Supercond. Sci. Technol., 31 015004 (2017).

Thin Regions are Unusually Large Grains

 EBSD analysis of grain orientation reveals that the thin regions in the hot spots are in fact large grains, with diameter ~100 microns vs ~1 micron for standard Nb₃Sn grains

 This is consistent with mechanism for growth of grains: diffusion of tin to interface via grain boundaries

44 Y. 8/4 2017). Y. 8/4 2017 Y. 8/4 Y. 8/4 2017 Y. 8/4 2017 Y. 8/4 2017 Y. 8/4 Y. 8/4 Y. 8

Epitaxial orientation relationships at Nb/Nb₃Sn

Jae^sYel¹Lee, Northwestern University / Fermilab^{osen}

45 https://arxiv.org/abs/1807.03898 Epitaxial orientation relationships at Nb/Nb₃Sn

Jae^sÝel¹²ee, Northwestern University / Fermilab^{osen}

46 https://arxiv.org/abs/1807.03898

Orientation relationship vs mistfits, Sn-deficient regions, GBs

 $\begin{array}{c} \textbf{Orientation A} \\ Nb_{3}Sn~(1\bar{2}0) //Nb~(\bar{1}11) \\ Nb_{3}Sn~(002) //Nb~(1\bar{1}2) \end{array}$

 $\begin{array}{l} \textbf{Orientation B} \\ \texttt{Nb}_3 \texttt{Sn} \ (1\overline{2}0) //\texttt{Nb} \ (\overline{1}11) \\ \texttt{Nb}_3 \texttt{Sn} \ (002) //\texttt{Nb} \ (23\overline{1}) \end{array}$

 $\begin{array}{l} \textbf{Orientation C} \\ \texttt{Nb}_3 \texttt{Sn} \ (1\overline{2}0) //\texttt{Nb} \ (\overline{1}11) \\ \texttt{Nb}_3 \texttt{Sn} \ (002) //\texttt{Nb} \ (0\overline{1}1) \end{array}$

Thin Region Summary and Outlook

- For cavity with poor performance, worst regions show:
 - Thin coating
 - Composed of large, single grains
 - With specific orientation relative to Nb substrate
- Now need to extend lessons learned to prevent the formation of these regions
- Improved understanding particularly key for multicell cavities, where first attempts have shown substantial presence of "patchy" regions

On the Horizon

Nb₃Sn Coatings of 3.9 GHz and 650 MHz Cavities

How do properties scale with frequency? Residual and BCS resistance, Q-slope, quench field...

VTS baseline (Nb only)

650 MHz 1-cell Coated with Nb₃Sn

- Very first coating on 9/4 (1 week ago)
- Vertical test in ~2 weeks

Sam Posen

Summary and Outlook

- Superconducting radiofrequency cavities accelerate particle beams at large facilities in a diverse range of scientific applications, with more being added every year
- Nb₃Sn offers a path to operation at higher temperatures, where cooling is substantially more efficient, potentially opening new applications
- Nb₃Sn focus for near future:
 - Reproducibility on single cells
 - Push to remove Q-slope and increase maximum gradient
 - Move into other frequencies and into multicells

Fermilab