Making Molecular Movies with MeV Electrons

Xiaozhe Shen

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

ACCELERATOR PHYSICS AND ENGINEERING SEMINARS Dec. 17th, 2021

Outline

- Introduction
- SLAC MeV UED
- Science highlights
- R&Ds

-SLAC

Outline

- Introduction
- SLAC MeV UED
- Science highlights
- R&Ds

-SLAC

A brief comparison of objectives

One of the main missions of FRIB is to answer

 "How does subatomic matter organize itself and what phenomena emerge?"

Quoted from FRIB: Opening New Frontiers in Nuclear Science – Moving Forward with the Long Range Plan

(https://frib.msu.edu/_files/pdfs/frib_opening_new_frontiers_in_nuclear_science.pdf)

Atomic scale objectives in matter

• Lattice, electron, orbital, spin degrees of freedom in crystals

Structure-property-dynamics correlation

- Structure spatial scale Angstrom (10⁻¹⁰m)
- Property insulator, metal, superconductor, ...
- Dynamics -- temporal scale femtosecond (10⁻¹⁵ s)
- Structure-property-dynamics correlation → full understanding and controlling of energy and matter

- Metal-insulator phase transition in VO₂
 - Monoclinic lattice insulator
 - Rutile lattice metal

Molecular movie

- Reveal structure-propertydynamics correlation
- Require atomic length (Å) and time scale (fs) resolutions

First stroboscopic photography

- The motion of a galloping horse is too fast to be captured by human eyes
- "All four legs of a galloping horse are off the ground momentarily"?
- An array of 12 cameras photographing a galloping horse in a sequence of shots
- Time resolution ~100 ms

High-speed stroboscopic photography

- Use a flashing light (strobe) to stop motion, reach a time resolution on the order of **µs**,
- Provide new insights into fast dynamics (first pump-probe experiment). (https://youtu.be/yIUZ-qKWnXc)

Probing ultrafast and ultrasmall with lights

Stanford Synchrotron Radiation Lightsource (SSRL). 234 m circumference.

Probing ultrafast and ultrasmall with electrons

Unique features of electron compared to x-ray

- 10⁴ 10⁶ times larger scattering cross sections
- 10³ times less radiation damage
- charged particle, flexibly manipulated by electromagnetic fields

Real space vs diffractive (reciprocal space) imaging

Real space imaging

- Good at resolving local structure, such as defects, dislocations, etc.
- Can reach Å spatial resolution with sophisticated aberration correction optics
- Not yet reaching fs temporal resolution at the same time

Diffractive (reciprocal space) imaging

- Conjugated to real space imaging ٠
- Ensemble average imaging •
- Can reach Å-fs spatial-temporal resolution ٠

real space

reciprocal space

First ultrafast electron diffraction experiment

Prof. Gérard Albert Mourou recipient of 2018 Nobel Prize for physic "for his invention of chirped pulse amplification"

Mourou et al., *Appl. Phys. Lett.* **41**, 44 (1982) Williamson et al., *Phys. Rev. Lett.* **52**, 2364 (1984) Ultrafast (20 ps) melting of Al thin film

- 25 keV electron beams
- Laser pump electron probe experiment
- 100 samples per pump-probe delay point

FIG. 1. Schematic of picosecond electron-diffraction apparatus. A streak-camera tube (deflection plates removed) is used to produce the electron pulse. The 25-keV electron pulse passes through the AI specimen and produces a diffraction pattern of the structure with a 20-ps exposure.

SLAC

Death of a light Bulb-1.30 (al. Bullet Ga. 1936

CA. 1936 140 Fland Byster

Development of UED/UEM

Prof. Ahmed Hassan Zewail, recipient of 1999 Nobel Prize in Chemistry, "for showing that it is possible with rapid laser technique to study in slow motion how atoms in a molecule move during a chemical reaction" Gas phase UED, femto-chemistry, 0.01Å, 1 ps Ultrafast electron crystallography, picometer, 300 fs Ultrafast electron microscopy, single-electron, ≤ 100 fs

A. H. Zewail, Annu. Rev. Phys. Chem. 2006, 57, 65

Development of UED/UEM

- Higher time resolution (~100 fs)
 - Short electron propagation distance (1-5 cm)
 - Radio-frequency compression cavity
- Higher beam coherence
 - Nanotip cathode emission
- Profs. R. J. D Miller, Bradley Siwick, Ralph Ernstorfer, Claus Ropers, Jianming Cao, David Flanagan, Chong-Yu Ruan,...

Prof. Chong-Yu Ruan **Department of Physics** and Astronomy, Michigan State University

CCD

Development of UED/UEM

Applications:

- Gas phase electron diffraction
- Strain waves/phonons
- Phase transitions (irreversible)
- Correlated electron materials
- Surfaces, interfaces
- Nanoparticles (~2 nm)
- Complex molecular crystals
 Electron probe energies are on
 keV level due to the DC voltage
 breakdown limit

M. Chergui, et al. ChemPhysChem 10, 28-43 (2009)

Diffraction Frame

t .= +5 ns

 $t_{-} = -95 \text{ ps}$

MeV electrons for UED and UEM

Space-charge forces suppression with relativistic electrons

- shorter bunch \Rightarrow higher time resolution
- more electrons in a bunch

Negligible pump-probe velocity mismatch

• Δt_{vm} < 10 fs for 3 MeV e beam passing 150 μ m gas target

MeV electrons for UED and UEM

Larger penetration depth

- "thick" sample
- kinematic diffraction
 Less sample damage
- Less energy deposition
- Lower dose rate, less damage to dose rate sensitive matter

9

20

MeV electrons for UED and UEM

Development of femtosecond laser system

- triggering generation of ultrashort photoelectrons
 Advancement in high gradient photocathode radio-frequency (RF) gun
- Rapid acceleration of photoelectrons to relativistic energy Numerous research efforts over decades Currently active MeV UED/UEM programs
- SLAC, BNL @USA, DESY @Germany, SJTU @China, KAIST @Korea, Osaka Univ. @ Japan

PHYSICAL REVIEW E

VOLUME 54, NUMBER 4

OCTOBER 100

Experimental observation of high-brightness microbunching in a photocathode rf electron gun

X. J. Wang, X. Qiu, and I. Ben-Zvi National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (Received 13 February 1996)

We report the measurement of very short, high-brightness bunches of electrons produced in a photocathode rf gun with no magnetic compression. The electron beam bunch length and the charge distribution along the bunch were measured by passing the energy chirple dth electron beam through a momentum selection silt while varying the phase of the rf linac. The bunch compression as a function of rf gun phase and electric field at the cathode were investigated. The shortest measured bunch is 370 ± 100 fs (at 95% of the charge) with 2.5×10^8 electrons (170 A peak current); the normalized measuritation entitiate of this beam was measured to be 0.5π mm mmd and the energy spread is 0.15% [S1063-651X(96)51110-4]

Dr. Xijie Wang, recipients of the 2021 PAST Award, bestowed by the Institute of Electrical and Electronics Engineers, IEEE.

"for contributions to the development of high-brightness, ultrafast electron beams and their applications to free-electron lasers and ultrafast electron diffraction."

Outline

- Introduction
- SLAC MeV UED
- Science highlights
- R&Ds

-SLAC

SLAC's vision for ultrafast electron scattering

MeV Ultrafast Electron Diffraction

SLAC

Development of ultrafast electron scattering instrument to enable advanced scientific opportunities ²²

SLAC's vision for ultrafast electron scattering

Instrument overview

SLAC

S. Weathersby, et al., Rev. Sci. Instrum. 86, 73702 (2015))

X. Shen, et al., Struct. Dyn. 6, 054305 (2019)

Pump laser capability

10⁻²

crystals

10

5

15

Frequency (THz)

20

25

30

Wavelength (µm)

SLAC MeV UED machine stability

- RF stability
 - RMS rf amplitude jitter 0.025%
 - RMS rf phase jitter
 0.032 deg
 - corresponds to rms timing jitter < 50 fs

SLAC MeV UED machine stability

- Electron beam pointing stability
 - Single-shot e beam images at detector
 - RMS beam centroid jitters
 0.36 pixel, corresponding to 10 μm.

SLAC MeV UED machine stability

- RF jitter causes electron beam arrival time jitter w.r.t. pump laser
- Pump-probe timing (t₀) stability
- THz streak camera^{*} enables t₀ determination with < 1 fs accuracy
- Achieved rms t₀ jitter 21.2 fs

SLAC MeV UED instrument resolutions

- Reciprocal-space
 resolution
 - Resolving power in reciprocal space
 - 1T-TaS₂ super lattice peaks resolved, demonstrated to be <u>0.17 Å⁻¹</u>

Reciprocal lattice a* = 2.16 Å⁻¹ Reciprocal superlattice q1 = 0.6 Å⁻¹

L. Le Guyader, et al., Struct. Dyn. 4 044020 (2017)

SLAC MeV UED instrument resolutions

- Temporal resolution
 - Time-resolved photodissociation process of CF₃I molecules
 - Demonstrated to be < 150 fs FWHM

J. Yang, et al., Science 361 64-47 (2018)

Outline

- Introduction
- SLAC MeV UED
- Science highlights
- R&Ds

-SLAC

Multifunctional platform for ultrafast science

-SLAC

Ultrafast science enabled by SLAC MeV UED

Atomic movie of light-induced
structural distortion in the
perovskites solar cell (Sci. Adv. 3
e1602388 (2017)).Image: Concal intersections
(Science 360 1451-1455 (2018))Image: Concal intersections
(Science 361 1451-1455 (2018))Image: Concal intersections
(Science 361 1451-1455 (2018))

Molecular movie of ringopening & ground state dynamics (*Nat. Chem.* (2019)).

3-D FePt structure dynamics reveals lattice response to magnetic stress (*Nat. Comm. 9, 388,(2018)).*

Ultrafast topological switch by Time-varying shear strain (*Nature* 565, 61-77 (2019))

Light induced CDW (*Nat. Phys.* 16, pages159–163(2020)).

Simultaneous observation of nuclear and electronic dynamics (*Science.* 368, 885 (2020)).

Electric-field-pump-MeV-electron-probe schematic

- Metal-insulator transition in VO₂
- Candidate material for high performance computer
- Operando measurement

Synchronized electron photography

Simultaneous structure and property measurement

- Differential diffraction pattern reveals structure change
- Current probe measures the resistance change
- Structure-property correlation obtained

Transient conducting state in VO₂

- A transient conducting state is identified
 - same lattice structure as the insulating state
 - but conducts electricity
 - Less energy to switch to, less heat, higher density computer

Single-shot MeV UED for Au thin film melting

Single-shot MeV UED for Au thin film melting

2D diffraction Radial profile 0 8000 5000 0 2000 (200)1.17 MJ/kg 1.17 MJ/kg 1.17 MJ/kg -2 ps -7 ps 1500 SC Au - 17 ps PC Au D 1,17 MJ/kg 10³ - + - Lin 2006 1000 0 (sd) - - Mazevet 2005 (220) (200) (220) (420) Melting time 500 (400) Homogeneous Melting Regime $t = 17 \, ps$ t = 2psR t = 7 psC A Heterogeneous Melting Regime Incomplete Melting Regime 4000 2000 0 2000 Absorbed energy density 200 ttering Intensity 10¹ 0.36 MJ/kg 0.36 MJ/kg 0.36 MJ/kg -20 ps -100 ps 1500 H 0.36 MJ/kg 1000 * • • 10⁰ 0.4 0.8 1.2 1.6 0 500 (arb. $t = 20 \, ps$ t = 100 ps t = 800 ps Energy density (MJ/kg) E G . units) 4000 1000 1000 0 0 fast, through out melting sample 0.18 MJ/kg 0.18 MJ/kg 0.18 MJ/kg - 100 ps 1500 - 1000 ps - 3000 ps Heterogeneous Slow, from L 0.18 MJ/kg (0) . . . melting boundary, defects 1000 Incomplete Solid-liquid 50 t = 100 ps t = 1000 pst = 3000 ps K melting coexistence 8 Time Q (Å-1) Up to 60% off Theory

prediction

from experiment

-SLAC

Molecular movie

Isolated gas molecules, photoexcitation

Rotation, bond breaking, ring opening...

Photoenergy conversion pathways

Challenges

Ultrafast motion (<100 fs)

Weak gas diffraction

MeV UED

High spatial resolution (12 Å⁻¹/0.5 Å)

High time resolution (<150 fs)

More e⁻ per bunch to enhance signal

Rotational revival of N₂ molecule N₂ Nozzle 3.7 MeV e Laser induced dipole in N₂, causing N_2 molecule rotation Laser polarization 0.61 Simulation -Data 0.6 Anisotropy 0.58 0.57 0.56 0 2 6 8 10 Time(ps) Demonstration of gas-phase MeV UED, 250 fs J. Yang, et al. Nature Comm. 7, 11232 (2016).

2nd gen. gas-phase MeV UED

- CF₃I photodissociation
- Conical interaction resolved

CF₃I photodissociation dynamics

-SLAC

J. P. F. Nunes, et al., Struct. Dyn. 7, 024301 (2020)

MeV electrons

critical to life

- High time resolution (< 150 fs) •
- High q range (12 $Å^{-1}$) •
- Large penetration depth (100 nm) ٠
- Challenges

Opportunities

6 orders of magnitude isolation of vacuum ٠

Liquid phase MeV UED Liquid solution is natural environment for chemis 10-10

SLAC

10-5

46

SLAC

Liquid phase MeV UED

• Microfluid gas-dynamics nozzle adapted

- Measure liquid jet thickness using interferometric imaging
 - < 100 nm region
- Measure e beam transmission at various locations
 - < 10% multiple scattering at thin region

J. P. F. Nunes, et al., Struct. Dyn. 7, 024301 (2020)

*J.D. Koralek, et al., Nat. Comm. 9, 1353 (2018)

Liquid phase MeV UED

Hydrogen bond resolved by MeV UED

J. P. F. Nunes, et al., Struct. Dyn. 7, 024301 (2020)

Most dense at 39 deg F, anomalous compared to most MeV electron probe

Ultrafast hydrogen bond strengthening in liquid water

- unusually high surface tension
- large capacity

liquids

Water

Ultrafast hydrogen bond motion captured by MeV UED

Most abundant but least understood in nature

Outline

- Introduction
- SLAC MeV UED
- Science highlights
- R&Ds

-SLAC

Femtosecond MeV electron microdiffraction

- 30 µm rms electron beam size on ٠ **10 \mum** Paraffin ($C_{44}H_{90}$) crystal, **0.17** Å⁻¹ reciprocal space resolution
- 5 µm rms electron beam size on 10 ٠ μ m Paraffin ($C_{44}H_{90}$) crystal, 0.63 Å⁻¹ reciprocal space resolution
- Maintain ~100 fs rms temporal ٠ resolution
- Optimization of emittance ٠
- Opportunities to explore ultrafast ٠ structural dynamics over localized crystalline area

X. Shen et al., Ultramicroscopy **184**, 172 (2018)

Time [fs]

600

-200 0 50

Electron beam characterization with THz streaking

R. K. Li, M. C. Hoffmann, E. A. Nanni et al., Phys. Rev. Accel. Beams 22, 012803 (2019).

VHF SRF gun for MHz UED & single-shot UEM

SLAC

- High rep-rate:
 - up to 200 MHz
- High RF stability:
 - towards 10⁻⁵ amplitude and 10 fs phase stability
- High acceleration gradient:
 - > 25 MV/m high peak beam brightness
- High beam energy:
 - 4 MeV, space charge effect suppression
- High flexibility:
 - MHz UED & single-shot UEM
- Synergy with LCLS-II HE

Vacuum Vessel Magnetic Shield LN Shield LHe Vessel RF Cavity Photocathode Stalk Vacuum/Beam Pipe High TC Solenoid RF Tuner RF Coupler

Courtesy of Xijie Wang

Acknowledgement

SLAC NATIONAL ACCELERATOR LABORATORY

SLAC UED program is supported in part by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences Scientific User Facilities Division – Accelerator & Detector R&D Program

SLAC UED/UEM Initiative Program Development Funds (SLAC program development and AD program development), and Laboratory Directed Research & Development (LDRD) fund.

The technical support provided by SLAC Accelerator Directorate, Technology Innovation Directorate, and LCLS is grateful acknowledged

Acknowledgement

Thank you for your attention!

