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About the Talk

e this talk is not about
v" advancing the state-of-the-art in machine learning
v implementing cutting edge algorithms

e this talk is about

v" a conceptually simple machine learning classitication problem

v" the development of a deployed system — from data collection to implementation
v valuable lessons learned along the way

v the challenges of working with real-world data
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Al/ML in Accelerator Physics

Some Applications of ATl to the Problems of Accelerator Physics’

T. Higo!, H. Shoace and J. E. Spencer
Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94305

Abstract

Failure of orbit correction schemes to recognize betatron oscillation patterns obvious to any machine operator is a
good problem with which to analyze the uses of Artificial Intelligence and the roles and relationships of operators, control
systems and machines. Because such error modes are very common, their generalization could provide an efficient machine

Accelerator Diagnosis and Control by Neural Nets*

J. E. SPENCER
Stanjord Linear Accelerator Center
Stanford University, Stanford, California 94309

Abstract

Neural Nets(NN) have been described as a solution looking for a problem. In the last conference. Artificial Intelligence( Al) was
considered inghe accelerator context. While good for local surveillance and control, its use for large complex systems{LCS) was
much more icted. By contrast. NN provide a good metaphor for LUS. It can be argued that they are logically equivalent to

Neural Network Technique for Orbit Correction in
Accelerators/Storage rings. *

Eva Bozoki and Aharon Friedman
National Synchrotron Light Source,
Brookhaven National Laboratory,
PO Box 5000
Upton, NY 11973-5000

Abstract

We are exploring the use of Neural Networks, using the SNNS simulator [1],
for orbit control in accelerators (primarily circular accelerators) and storage
rings. The orbit of the beam in those machines are measured by orbit monitors

“Neural Nets (NN) have been described as a solution looking for a problem.”
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Rise of Peer-Reviewed ML Publications

i PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 112802 (2018)
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Machine Learning 101

machine learning: "The field of study that gives computers the ability to learn
without being explicitly programmed" A. Samuel

Artificial
Intelligence

Machine

Learning

dota —
—> rules —> new data
answers —>

/

/" “a machine-learning system is trained rather
than explicitly programmed” F. Chollet
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ML and Particle Accelerators

* particle accelerators represent the most complex scientific instruments
designed, built, and operated

* there is clear motivation to maximize scientific output per operating dollar

Model Learning Algorithms for Anomaly . Detection and Classification of Collective
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E Tilaro, B. Bradu, M. Gonzale pw ppRTENCE USING NuPIC TO DETECT ANOMALIES
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Anomaly Detection ii the European XFEL using
T. D’Ottavio', P. S. Dyer, J. Piacentino, Jr., M. R. Tomko ace Method

utlin
Us“lg Mach Brookhaven National Laboratory, Upton, USA
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Definitions

* Fault: on unpermitted deviation of at least one characteristic property or
poarameter of the system from acceptable, usual or standard conditions

* Fault Detection: monitoring measured variables to determine it a fault has
occurred (it a fault has occurred, it may be important to determine the time
at which the fault occurred)

* Fault Isolation: determining the location of a fault once it is known that a
tfault has occurred

* Fault Identification: determining the type of fault

* Fault Prediction: providing advanced warning of an impeding fault

(R. Isermann, “Fault Diagnosis Systems”)



Detection vs (Isolation, Identification, Prediction)

* machine protection systems, personal safety systems, alarms, and other
engineered systems are able to detect many types of taults

* in these instances, detection is not necessary = it's (painfully) obvious
when a fault has occurred

Isolation,
Detection Identification,
Prediction
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Continuous Electron Beam Accelerator Facility

CEBAF is a CW recirculating linac utilizing 418 SRF cavities
to accelerate electrons up to 12 GeV through 5-passes

* it is a nuclear physics user-tacility capable of servicing
4 experimental halls simultaneously

* the heart of the machine is the SRF cavities




CEBAF Down Time Manager

» CEBAF short machine downtime trips (< 5 min.) in 2019

20,9 15 /Hr

(10,080
/Month)

10 /Hr
(6,720

/Month)

Dump (Insert.) 0.6

Dump (Station.) 0.0

Gun/Laser 0.0

Haill 0.8

MPS (BCM/BLA) 0.2

MPS (BLM) 1.4

MPS (Multi/Other) 1.6

Magnets 0.0

Multiple/Other 0.2
5 fHr
(3,360
/Month)
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Unknown/Missing 0.1

Vacuum 0.0

RF (C25/C50) 3.5

RF (C100}) 0.6 75.2

RF (Multi/Other) 0.0 3.0

JORm@ELEdoONnoUNoDN

(courtesy R. Michaud)

0 RF (Separator) 0.0 1.1

Total: 9.3 310.7

« Max Trip Duration: 5 Minutes
= Rate from Program (4492.47 hrs)
= SAD Trips excluded
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Defining the Problem

we have the ability to record high- FAULT ISOLATION FAULT IDENTIFICATION
fidelity data from 12 cryomodules Which of the 8 cavities faulted first? What kind of trip was it?

train @ model to correctly classify the cavity and type of RF fault given waveform data

machine learning multi-class classification time-series data




Brute Force Data Analysis

C100 FAULTS BASED ON WAVEFORMS FOR 14 Nov 19 TO 27 Jan 20
# Controls Fault A Fast Quench O Microphonics & Quench 100 ms

—— Multiple Cavity Trip o Interlock 4 Quench 3ms + Heat Riser
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Data Acquisition System

» wavetorm harvester was developed to capture RF time-series signals after a

tfault and write them to file tor later analysis
v each of the 17 harvested wavetorm signals is 8,192 points long
v trigger set such that 94% of the recorded data precedes the fault and 6% aftter
v' pre-tfault data provides valuable information about the root cause of the trip

fault event

streaming data

1
|
|
|
|
\

8,192 samples X 0.2 ms/sample = 1.64 seconds
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Motivation
* labeling is hard

— cavity | —— cavity 2
cavity 4 —— cavity 5
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17 signals/cavity x 8 cavities = 136 traces .!_e,f,f.e;son Lab




Benefit of Fault Isolation and Identification

Post-Run Analysis

* use aggregate statistics for data-driven guidance for maintenance and/or
upgrade activities

Post-Fault Analysis

* provides critical teedback to control room operators

e fault types get mapped to actions for the operators




Workflow

oAq

friggered

//
/1

actionable
information

continuous
data
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Master Dataset

 perform feature extraction by fitting each time-series signal with 6
autoregressive coefficients:

v’ 8 cavities X 4 signals/cavity X 6 features/signal = 192 features

* data from January 18, 2019 to March 9, 2020

v event must include all 8 cavities
v must be sampled at 5 kHz (0.20 ms sample time)

« 2,375 events X 192 features Cavity Label | Fault Label

() data

o~ m N

Cavity Number

E_Quench

Controls_Fault
Heat_Riser_Choke
Microphonics
Multi_Cav_Turn_Off
Quench_100ms
Quench_3ms

(L. Vidyaratne, JLAB-TN-20-014)

Single_Cav_Turn_Off


https://github.com/JeffersonLab/AI_SRF_operations/tree/master/datasets/C100-2020-04-30
https://github.com/JeffersonLab/AI_SRF_operations/tree/master/datasets/C100-2020-04-30

Workflow: Developing ML Models

CAVITY ID FAULT ID

cavity labels —> <— fault labels

Model Evaluation
Model Selection

Hyperparameter Tuning

Deployment

.gg‘_?egon Lab



Model Evaluation and Selection
* split data into train/test (70%/30%)

* 10-told cross-validation scores tor several ditterent algorithms

* perform hyperparameter optimization on Random Forest classitier

1.0 - 1.0 1
Cavity Identification Fault Identification

0.9 - B
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0.9 - 58
—— |
= = =

0.8 - , T

_ ==
> - T 0

0.6 - 0.6 -

-

0.8 A

O

0.7 1

Accuracy

>
@
©
_
>
@
O
<

I I I I I I I I 0.5 I I 1 1 1 1 I
KNN DT SVC Bayes Bagging RF XT GBC KNN DT SVC BayesBagging RF XT

0.5

Cavity Identification Fault Type

10-fold cross-validation (%) 87.97 £ 1.81 85.52 + 3.65
accuracy (test data) (%) 87.94 87.66 @f;gon Lab




ML Model Performance

* models were applied to data collected from March 10-24, 2020

* 312 tault events were analyzed by the models

* summary of model performances compared to labeled data

Agree Disagree Total
Cavity Model 265 47 312
Fault Model 244 68 312

* cavity model accuracy: 84.9%

e fault model accuracy: 78.2%




ML Model Performance

* confusion matrices showing ML model performance

All Cavities JEERRL 0.0% 0.0% Controls_Fault - 33.3%  0.0% 25.0% 83% 83% 0.0% 25.0%

Cavity 1 - 0.0% 0.0% 1.3% : E_Quench - 16.3% 6.1% 4.1% 0.0% 0.0%

Cavity 2- 0.0% 2.9% 0.0% 17.6% Heat_Riser_Choke - 0.0% 0.0% 0.0% 14.3% 35.7% | -H07]

Cavity 3-15.4% 7.7% 38.5% 38.5% Microphonics - 45% 15.2%

Cavity 4- 0.0% 0.0% Multi_Cav_Turn_Off - 20%  2.0%

True Label

[,
Q0
©
—
v
-
| -
|_

Cavity 5- 0.0% 0.0% 6.1% Quench_100ms - KA 0.0%  0.0%

Cavity 6 - 5.0% 0.0% 10.0% 0.0% Quench_3ms - 3.2% 0.0%

Cavity7— 0.0% 0.0% 0.0% 40.0% 0.0% Single_Cav_Turn_Off - 2 79 0.0% 1.3%

Cavity 8- 6.5%

o
R

43% 0.0% 22% 6.5%

Controls_Fault -
E_Quench -
Microphonics -
Quench_3ms -
Cav_Turn_Off

Cavity 7 -

Cavity 1 -
Cavity 2 -
Cavity 3 -
Cavity 4 -
Cavity 5 -
Cavity 6 -
Heat_Riser_Choke -

All Cavities -
Multi_Cav_Turn_Off -
Quench_100ms -

Single

Predicted Label Predicted Label
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Visualization and Communication

* for ML models to be effective, information must be communicated clearly and concisely

e visualize spatial and temporal nature of model predictions

Fault Timeline
— Single_Cav — Multi_Cav — Quench — E_Quench — Quench_3ms — Quench_100ms — Microphonics — Controls_Fault — Other

MNo_Label
Other

Multi

2020-03-07 2020-03-07 2020-03-07 2020-03-0% 2020-03-08 2020-03-08 2020-03-08 2020-03-08
00:00:00.0 06:00:00.0 12:00:00.0 ¥8:00:00.0 00:00:00.0 06:00:00.0 12:00:00.0 18:00:00.0

Fault vs Cavity Labels
1L23

MNo_Label

Other
Controls_Fault 20
Microphonics 15

Quench_100ms
Quench_3ms 10
E_Quench
Quench 5

Multi_Cav

Single_Cav 0

1 1
Multi cav 1 Other MNo_Label

(C. Tennant, PRAB 23, 114601 (2020)) .Lej',f.e;son Lab




Post-Fault: Actionable Information

cavity 8 in cryomodule 2126 plagued by electronic quenches

Fault Types By Zone
Timestamp: 2020/08/12 23:02:56.200
— E_Quench{2L26)

® e go 0 ]
JA%6ree veg, ... s ..... s, a0 oo ........ ®

2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22
00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0

Cavity By Zone
— Multi—1— 2 —4—=5—06 — 8§ — Other — No_Label

2 AR M TR TR A AU K LT TR TRl i T P (R %y e el Ja S

2020-08-09 2020-08-10 2020-08-11 2020-08-12 2020-08-13 2020-08-14 2020-08-15 2020-08-16 2020-08-17 2020-08-18 2020-08-19 2020-08-20 2020-08-21 2020-08-22
00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0

Fault vs Cavity Labels

2126
Mo_Label
Other
Controls_Fault
Microphonics
Quench_100ms
Quench_3ms
E_Quench
Quench
Multi_Cav
Single_Cav

I
Mo_Label
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Post-Fault: Actionable Information

* turn down gradient 9/5/2020 and taults went away completely

Fault Types By Zone

— Single_Cav — Multi_Cav — Quench — E_Quench — Quench_32ms — Quench_100ms — Microphonics — Controls_Fault — Other

.....h.. ..'. ..

2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-05-01 2020-09-02 2020-09-03
00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0

Cavity By Zone
— Mullti—1—2 —4—5—6 — & — Other — No_Label

2020-09-04 2020-09-05
00:00:00.0 00:00:00.0

L]
L :’

2020-08-23 2020-08-24 2020-08-25 2020-08-26 2020-08-27 2020-08-28 2020-08-29 2020-08-30 2020-08-31 2020-05-01 2020-09-02 2020-05-03

2020-09-04 2020-05-05
00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0 00:00:00.0

00:00:00.0 00:00:00.0 00:00:00.0

Fault vs Cavity Labels

2126
MNo_Label
Other
Controls_Fault
Microphonics
Quench_100ms
Quench_3ms
E_Quench
Quench
Multi_Cav
Single_Cav

I
MNo_Label
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Post-Run: Actionable Information

2020-07-13

1L24

Controls Fault
E_Quench o
Heat Riser Choke
Microphonics 4
Multi Cav turn off -
Quench_100ms 4
Quench_3ms -
Single Cav Turn off

fault_label

fault_label

fault_label
fault_label

fault_label

L] T T T T L] T ]
multil 2 3 4 5 & 7 8 multi1 2 3 4 5 & 7 multi 1 2 3 4 5 6 4 5 6 7
cavity label cavity_label cavity_label cavity_label
222 223 224

T T ]
multi1 2 3 4 5 6 7 B
cavity_label

2L25 2L26

Contrals Fault 4
E_Quench 1
Heat Riser Choke -
Microphonics
Multi Cav turn off
Quench_100ms A
Quench_3ms 1
Single Cav Turn off

fault_label

fault_label

fault_label
fault_label

T ¥ T T
multi 1 2 3 4 5 6 7 8 wmultil 2 3 4 5 & 7
cavity_label

T ]
multi 1 2 3 4 5 6 7 8 multil 2 3 5 6 7
cavity_label cavity_label cavity_label

T T T T L] T ¥ T L] T
8 multi 1 2 3 4 5 6 7 8
cavity_label
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Workflow
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Deep Recurrent Architecture

* bidirectional LSTM layers tor temporal teature learning

* tfraining for simultaneous classification of cavity and fault: two-branch model
e training/validation/test (60%/20%/20%) stratitied sampling

bidirectional LSTM linear feed-forward layers
layers (64 each) |

\

input I I I Fault ID

Cavity ID

.Lej',f.e;son Lab



Deep Recurrent Architecture Results

Cavity Classification Fault Classification

Input Size | Test Accuracy (%) | Input Size | Test Accuracy (%)

17 waveforms/cavity | 136x256 86.1 136x256 82.1
4 waveforms/cavity = 32x256 87.7 32%256 81.3

* with more data, deep learning approaches the accuracies of the
machine learning models

* additionally, several convolutional neural network (CNN) architectures
were investigated yielding comparable results

.g_ej,f.e;son Lab



Workflow

oAq

friggered

/7 aature Machine Learning

> Deep Learning
actionable

information

continuous
data

Unsupervised Learning
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Unsupervised Learning

Dimensionality Reduction

* provides a means of compressing the
features into a lower dimensional space

* allow tor visualization of higher-dimension Mearingf
d O 1-0 Se-I-S compression

Image

Structure Classification
Discovery Feature © Customer

@ Elicitation  Fraud @® Retention
Detection ®

DIMENSIONALLY . .
REDUCTION CLASSIFICATION @ Diagnostics

Big data °

Visualisation

* speeds up training and inference time of
machine learning models Recommendec

Systems

® Forecasting
\

UNSUPERVISED SUPERVISED | o
LEARNING LEARNING @® Predictions

CLUSTERING REGRESSION

Targetted

Clustering

/ ® Process

MACHINE L
Optimization

LEARNING ~

Customer i New Insights

* by grouping data that are similar into Segmentaton

clusters, underlying structure and patterns
emerge that offer useful insights into the
dataset

REINFORCEMNET
LEARNING

Real-Time Decisions @ ® Robot Navigation

Game Al ® @ Skill Aquisition
[
Learning Tasks
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* with dimensionality reduction can visualize in 2D

could apply clustering techniques

/

e it unlabeled

Q—ONMIN» fry s

O — b~ S

oo

O~ @3> N\ — O
Q- >N A <
NV N CFne w0 o
Q~NOTWVSI rthee o

QN PNV
=N e
Q~ £ T WVS
O =g m T NnD
O~ T\

O~ 3ip O

~Q g
O QO
cC-w
™o o
Lt SR
_../__H__f
M. oa o
M~ o
ot Do Q-
S0 &

o O~
™~
~NG &




Dimensionality Reduction: 2D

Heat Riser Choke (636)
Controls Fault (598)
Electronic Quench (469)

3 ms Quench (330)
Microphonics (284)

100 ms Quench (278)
Single Cavity Turn-Off (270)
Unknown (64)
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Dimensionality Reduction: 3D

. Heat Riser Choke (636)
* clusters are evident Controls Fault (598)

e h lust f | — 1 Electronic Quench (469)
owever, clusters o 3 ms Quench (330)

same fault-type are | | Microphonics (284)

often separated i 100 ms Quench (278)
s SRSy | Single Cavity Turn-Off (270)
Unknown (64)

2,929 samples

.L(ﬁ?egon Lab



Dimensionality Reduction

Single Cavity Turn-off Controls Faults in Cavities 3 and 4

zone
1L22

1123

1L.24

1125

1L26

2122

2L23

2124

2L25

2L26
cavity_label
1

2

RIM1 ~
RIMZ

RIM3 ¥
RIMA [
RIMS

RIMG

RIM7

RIMS

1L22
1L23
1L24
1L25
1L26

cavity 3, 1123 -

224 S :
2125 gorc s
2126 - w105
. R106
cavity_label 106} Ri07
3 004 RI08

4

=20
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Workflow

> Streaming Data

DAQ
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C100 Fault Prediction: Future

offline training

discard

C100 crvomodule Model A: fault prediction (discriminate between “stable” and “impending”)
. Model B: fault-type prediction (classify fault)

* learning from data streams requires:
v' ability to process an example, inspect it only once, after which the data is discarded
v' using a limited amount of memory

v' the ability of models to predict at any point
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From Isolation and Identification to Prediction

* initial step: discriminate between “stable” and “impending” fault conditions
v' use saved waveforms

_..
o

<€ |

impending
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Initial Step: Binary Classifier

Binary Classification Full Dataset Binary Classification Full Dataset

True label
True label

impending impending -

mpending -
mpending

accuracy = /4.74% accuracy = 92.1 é%

Precision Recall f1-score

* remove fault types which do not » Stable | 0.9155 | 0.9244 | 0.9199

show any precursors Impending | 0.9272 | 0.9186 | 0.9229
Accuracy 0.9213
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Intermediate Step: Sliding Window

* can data prior to event accurately predict the fault type?
v' use saved waveforms

t = -1400 mis= -1200 nts= -1000 ms= -800 mst = -600 mst = -400 mg = -200 ms
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Intermediate Step: Sliding Window

* initial results suggests that for some fault types, prediction is possible

Electronic Quench

Microphonics

F1-score
F1-score

—o— 100 ms window —o— 100 ms window
—o— 200 ms window —o— 200 ms window
—8— 300 ms window —®— 300 ms window

T I I | I | ' ' ' ' ' '
-400 -300 -200 -100 0

-500 -400 -300 -200 -100 0
Time of Window Center (ms) Time of Window Center (ms)

motivates continued study




Data: Fueling Al

Detection — Isolation - Identification - Prediction

\ J \ J \ J
Y Y Y

beam off high sample frequency “snapshots” high sample frequency
streaming data

* commensurate increase in data fidelity required

SRF cavity instability
detection in legacy §
cryomodules

tield emission
management

prototype DAQ for legacy [ -"" | > JLab designed
CEBAF cryomodules \ , — | radiation detector




Cavity Instability Detection

Problem
v'SRF cavities can become unstable without presenting tfaults

v cavity instability causes beam energy instability, which can lead to beam loss and
limited availability of beam tor experiments

v'identitying an unstable SRF cavity with the present diagnostics at CEBAF is difficult
and time-consuming
= present diagnostics for the legacy cavities are not fast enough to record fast transient instabilities

Solution
v'develop and install a new tast DAQ system tor the legacy SRF cavities
v apply Al to the data acquired by the new DAQ to identity unstable cavities

v'the goal is to quickly identity misbehaving cavities and therefore improve beam
quality and availability
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Cavity Instability Detection

-
= RFAnalyzer version 4-0 el -

Commands  Configuration | 1L05-4 Commands

Max Y

[ ™

T
200
Current (ua)

MinXI i

%

* note, this represents an obvious example
* not all instances are so easily detectable
by an operator

RF Analyzer Tool 45 Jefferdon Lab




Field Emission Management

 Goal:

Maintain low levels of field emitted (FE) radiation without invasive interruptions to
physics and prevent damage to beamline components

* Description:

Use machine learning models — trained on data acquired with newly installed radiation
monitors — to model radiation levels, identity cavities that are the source of excessive FE
and/or cavities where field emission onsets have changed

radiation area damaged beamline valve damaged magnet and cables
4 ' ! } 7 ( "

.L(ﬁ?egon Lab



Field Emission Management

Problem

v'tield emission is a notorious problem resulting component damage, trips, activation,
etc.

v'a single cavity produces tield emitted electrons with a non-linear response to gradient
above a threshold (FE onset)
= these may change over time due to various factors

v'FE electrons can have complicated interactions with neighboring cavities and/or
cryomodules and can be transported substantial distances up or downstream

Solution

v'use machine learning models to help manage this radiation problem non-invasively
= can we model radiation levels given an RF configuration (GSETs, efc.)¢
= can we identify cavities that are the source of lots FE-related radiation@
= can we identify cavities with changed radiation onset thresholds?
= can we identify new field emitters and localize them in a linace
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Field Emission Management: Data Requirements

* Jefterson Lab designed, installed, and commissioned a new neutron and
gamma radiation detection system tocused on FE radiation
v operational August 2021
v'measure neutron dose rates correctly in the presence of photon radiation
v'detectors are “blind” to low energy photons and electrons
v'integrated into EPICS with signals for ggmma and neutron dose rates
v'wide dynamic range
v'currently have 21 detectors installed




Deep Learning Model

 develop deep learning models that do not rely on feature engineering
v’ getting similar performance as ML model

5000, Rely,
dropout 500, Relu,
dropout

Gammas vs Aggregate C100 Gradient
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Summary

e detecting, localizing (isolation) and classitying (identitication) represent
areas ripe tor Al/ML application

* the transition to fault prediction represents an ultimate goal

* cannot overemphasize the importance of access to information-rich data




Thank You.

tennant@jlab.org




