Highlighting FRIB Stories
Latest updates, research breakthroughs, and facility announcements for FRIB
Website articles and press releases about FRIB science.
Neutron-induced reactions play key roles across nuclear science answering questions from the origin of heavy elements in the Universe to cross section constraints for applications. Reactions on fission products, in particular, are relevant for astrophysical nucleosynthesis, stockpile stewardship, non-proliferation, and nuclear energy. Direct cross section measurements are not presently feasible for short-lived nuclei due to their unstable nature and current lack of a neutron target. Rather neutron-induced cross sections ((n, γ), (n,n’ γ), (n,2n), and so on) rely on statistical nuclear physics inputs and indirect experimental techniques to provide constraints. In this presentation, I will describe recent advances in statistical nuclear physics studies and indirect techniques that can provide experimentally constrained cross sections for astrophysics and applications.
External news and journal publications discussing FRIB science.
Researchers have reported new experimental results addressing the origin of rare proton-rich isotopes heavier than iron, called p-nuclei. Led by Artemis Tsantiri, then-graduate student at FRIB and current postdoctoral fellow at the University of Regina in Canada, the study presents the first rare isotope beam measurement of proton capture on arsenic-73 to produce selenium-74, providing new constraints on how the lightest p-nucleus is formed and destroyed in the cosmos.
A research team at FRIB is the first ever to observe a beta-delayed neutron emission from fluorine-25, a rare, unstable nuclide. Using the FRIB Decay Station Initiator (FDSi), the team found contradictions in prior experimental findings. The results led to a new line of inquiry into how particles in exotic, unstable isotopes remain bound under extreme conditions.
Researchers at FRIB have achieved a significant milestone in nuclear physics by detecting beta-delayed neutron emission from fluorine-25, an elusive and unstable nuclide. This groundbreaking discovery, made possible through the utilization of the FRIB Decay Station Initiator (FDSi), has unveiled new insights into the behavior of exotic isotopes under extreme conditions.
Physicists from institutions including FRIB used state-of-the-art ab-initio nuclear theory to show that several neutron-rich magnesium isotopes near neutron number 20 exhibit both normal and deformed shapes at low energy—evidence of shape coexistence and a breakdown of the traditional “magic” shell closure at . The work helps resolve longstanding questions about this region of the nuclear chart and identifies isotopes whose structures can be tested with modern rare-isotope facilities.
Laboratory Update for Users
The LUU is a newsletter for FRIB users that features noteworthy news and updates at the laboratory.
Laboratory Update for Alumni
The LUA newsletter for FRIB alumni features significant research and project milestones.