22 Jan

The Influence of Near-Threshold States on Nuclear Observables

22 January 2025 - 4:10 PM
1300 FRIB Laboratory and Online via Zoom
Argonne National Laboratory

Calem Hoffman

Show/Hide Abstract
One method of pursuit in our search for a more complete description of the spectroscopic properties of nuclei is through the isolation of specific or well-developed mechanisms. In the present work the characteristics of a weakly-bound nuclear single-particle orbital wave function, defined by its approach to the confining threshold, have been shown to be rooted within various nuclear phenomena. Most notably, the role of this geometric or so-called weak-binding behavior has been found to impact our descriptions of evolving single-particle orbitals, the presence or impact of 'bubble' nuclei, the locations of the particle driplines, and the origins of nuclear halo states. Future directions building upon and complementing this new insight will also be discussed.
24 Jan

Resonance Control for SRF Cavities

24 January 2025 - 3:00 PM
Online via Zoom
Fermi National Laboratory

Crispin Contreras-Martinez

Show/Hide Abstract
An SRF cavity is used to accelerate a beam of particles in a linac. In order to accelerate the beam efficiently and without interruptions the cavity must be tuned to the nominal frequency. During operation an SRF cavity experiences a wide variety of vibrations which perturb the cavity frequency. Many design efforts are implemented to mitigate the vibrations on the cavity and they result in a reduction. However, not all the vibrations can be eliminated and some while reduced are still present. In this talk a review of the vibration sources in LCLS-II and LCLS-II-HE cryomodules will be discussed. Cavity tuners are used to mitigate the vibrations that couldn’t be eliminated. The components of the tuner are discussed. Finally, a discussion on some resonance control algorithms will be done. Resonance control algorithms for both pulsed and continuous wave (CW) will be presented.
24 Jan

ASG Piano Concert: Echoes and Innovations performed by Jackson Hacias, Jonathan Hilliard, Kevin Eisenberg, and Chris Corey

24 January 2025 - 5:30 PM
1300 FRIB Laboratory
Show/Hide Abstract
Concert program: 1. Groovin high-John "Dizzy" Gilespie 2. Maroon-Jackson Hacias 3. I want to talk about you-Billy Eckstine 4. The night has a thousand eyes-Buddy Bernier/Jerry Brainin 5. In the pale glow of night-Jackson Hacias 6. Yes or no-Wayne Shorter 7. Galapagos-Jackson Hacias
26 Jan

Reimagining the Exploration of Fundamental Interactions with AI

26 January 2025 - 1:00 PM
Online via Zoom
Lawrence Berkeley National Laboratory

Benjamin Nachman

Show/Hide Abstract
Particle, nuclear, and astrophysics experiments are producing massive amounts of data to answer fundamental questions about the basic constituents of our universe. While researchers in these areas have been using advanced data science tools for decades, modern machine learning has introduced a paradigm shift whereby data can be directly analyzed holistically without first compressing it into a more manageable and human understandable format. How will the machines help us explore the unknown? Can they be trusted to give us the right answers? I’ll attempt to address these questions and others with a talk about the use of modern machine learning, including generative AI, in the study of fundamental interactions.
09 Feb

What can theoretical physics tell us about the origin and evolution of early life?

09 February 2025 - 3:00 PM
Online via Zoom
University of California San Diego

Nigel Goldenfeld

Show/Hide Abstract
Life on Earth is wonderfully diverse, with a multitude of life forms, structures and evolutionary mechanisms. However, there are two aspects of life that are universal - shared by all known organisms. These are the genetic code, which governs how DNA is converted into the proteins making up your body, and the unexpected left-handedness of the amino acids in your body. One would expect that your amino acids were a mixture of left and right-handed molecules, but none are right handed! In this talk, I describe how these universal aspects of biology can be understood as arising from evolution, but generalized to an era where genes, species and individuality had not yet emerged. I will also discuss to what extent one can find general principles of biology that can apply to all life in the universe, and what this would mean for the nascent field of astrobiology. Prof. Nigel Goldenfeld holds the Chancellor's Distinguished Professorship in Physics and joined UCSD in Fall 2021 after 36 years at the University of Illinois at Urbana-Champaign (UIUC). His research spans condensed matter theory, the theory of living systems, hydrodynamics and non-equilibrium statistical physics. He received his Ph.D in theoretical physics from the University of Cambridge (UK) in 1982, and for the years 1982-1985 was a postdoctoral fellow at the Institute for Theoretical Physics, University of California at Santa Barbara, where his work on the dynamics of snowflake growth helped launch the modern theory of pattern formation in nature. He joined the condensed matter theory group at the Department of Physics, UIUC in 1985, where his work was instrumental to the discovery of d-wave pairing in high temperature superconductors. In 1996, he co-founded NumeriX, a company that develops high-performance software for pricing and risk managing derivative securities. His interests in biology include microbial ecology, evolution and systems biology. He was a founding member of the Institute for Genomic Biology at UIUC, where he led the Biocomplexity Group and directed the NASA Astrobiology Institute for Universal Biology. During the COVID-19 pandemic, he pivoted from his experience in mathematical modeling of bacteria and viruses to computational epidemiology, advising the Governor of Illinois, and helping devise, set up and run the COVID saliva testing system at UIUC, which provided ~12 hour turnaround of PCR tests to the 50,000 people in the campus community and eventually to over 1700 schools and other institutions in Illinois and beyond. He has served on the editorial boards of several journals, including The Philosophical Transactions of the Royal Society, Physical Biology and the International Journal of Theoretical and Applied Finance. Selected honours include: Alfred P. Sloan Foundation Fellow, University Scholar of the University of Illinois, the Xerox Award for research, the A. Nordsieck award for excellence in graduate teaching and the American Physical Society's Leo P. Kadanoff Prize 2020. He is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, a Fellow of the Royal Society (UK) and a Member of the US National Academy of Sciences.
21 Feb

EIC RF Systems: A Good RF Challenge to Have

21 February 2025 - 3:00 PM
1309 FRIB Laboratory
Brookhaven National Laboratory

Zack Conway

Show/Hide Abstract

The Electron Ion Collider Project will upgrade the Brookhaven National Laboratory Relativistic Heavy Ion Collider complex to collide highly polarized (>70%) electrons and ions, from deuterons to the heaviest stable nuclei, with center-of-mass energies spanning 20 to 100 GeV at luminosities of 1033-1034 cm-2 s-1.  To achieve these goals a set of 4 unique superconducting radio frequency systems are required for beam acceleration, storage, and crabbing.  This seminar will briefly review the EIC as it relates to the radio-frequency systems, and then focus on the high-intensity beam interactions with the superconducting radio-frequency (SRF) systems.  Examples will include the 800 kW 2.0 K SRF cryomodules necessary for storing up to 2.5 A electron beams with ~ 10 MW of continuous power loss, 25 mrad crossing angle crab cavities, and the state-of-the-art damping required for all of the superconducting cavities.

11 May

Nuclear Science Summer School

11 May 2025 - 8:30 AM
1221A and 1221B FRIB Laboratory
Show/Hide Abstract
The Nuclear Science Summer School (NS3) is a summer school that introduces undergraduate student participants to the fields of nuclear science and nuclear astrophysics. NS3 is hosted by FRIB on the campus of Michigan State University (MSU). The school will offer lectures and activities covering selected nuclear science and astrophysics topics.

Events